期刊文献+

融合光流速度场与背景差分的自适应背景更新方法 被引量:4

Adaptive Background Updating Based on Optical Flow and Background Difference
在线阅读 下载PDF
导出
摘要 为利用视频监控系统识别铁路客运站的客流,根据车站监控环境的多变性特点,提出将光流速度场算法与背景差分算法相结合的自适应背景更新方法。将光流引入背景建模中,并与背景差分结果进行并运算,再通过"死角"灰度优化处理,实现背景的实时更新。以实录的北京南站视频对给出的自适应背景更新方法进行验证,并与均值背景法和高斯背景法的处理结果进行比较,结果表明,自适应背景更新方法较好地解决了背景的提取、实时更新及运动目标阴影扰动等问题,拟合的背景干净、虚影弱,描述的背景符合实际背景场景,用于动态场景的客流识别取得了较好的效果。 According to the variability of the monitoring environment at station, the adaptive background updating method based on optical flow and background difference was proposed to recognize passenger flow using video monitoring system at railway passenger by introducing optical flow in background modeling, station. Real-time background updating was realized background difference in union operation and "blind angle" in gray processing. Beijing South Railway Station video was adopted to verify the given adaptive background updating method and the obtained results were compared with those by the average back- ground method and Gaussian background method. The results show that the adaptive background updating method has effectively solved such problems as the extraction and real-time updating of background as well as the shadow disturbance of moving object, etc. The fitting background is clean and the virtual shadow is rather weak. The described background conforms to the actual background scene. Better passenger flow recognition results have been achieved in dynamic traffic scenes.
出处 《中国铁道科学》 EI CAS CSCD 北大核心 2014年第6期131-137,共7页 China Railway Science
基金 国家"八六三"计划项目(2009AA11Z207) 高等学校博士科研基金(20110009110011)
关键词 背景更新 光流速度场 背景差分 视频监控 客流识别 Background updating Optical flow Background difference Video surveillance Passengerflow recognition
作者简介 王爱丽(1987-),女,甘肃白银人,博士研究生。
  • 相关文献

参考文献8

  • 1WU Bingfei, JUANG Jhyhong, TSAI Pingtsung. A New Vehicle Detection Approach in Traffic Jam Conditions [J]. Computational Intelligence in Image and Signal Processing, 2007 (3) : 1-6.
  • 2YANG Y H, LEVINE M D. The Background Primal Sketch: an Approach for Tracking Moving Objects Match [J]. Machine Vision and Applications, 1992, 5 (1): 17-34.
  • 3WREN C, AZARBAYEJANI A. Pfinder: Real-Time Tracking of the Human Body [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7): 780-785.
  • 4ZIVKOVIC Z. Improved Adaptive Gaussian Mixture Model for Background Subtraction [J]. Pattern Recognition, 2004, 17 (2): 28-31.
  • 5ELGAMMAL A, DURAISWAMI R. Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance [J]. Proceeding of the IEEE, 2002, 90 (7): 1151-1163.
  • 6SHLENS J. A Tutorial on Principal Component Analysis [C] //Systems Neurobiology Laboratory. San Diego: Uni- versity of California, 2005: 1-26.
  • 7张水发,丁欢,张文生.双模型背景建模与目标检测研究[J].计算机研究与发展,2011,48(11):1983-1990. 被引量:12
  • 8张文强,路红,陈义东,宋元征,蒋煜.动态场景中的自适应背景建模研究[J].中国图象图形学报,2009,14(12):2627-2630. 被引量:5

二级参考文献21

  • 1杨常清,王孝通,李博,金良安.基于特征光流的角点匹配快速算法[J].光电工程,2006,33(4):85-88. 被引量:4
  • 2Lu W, Tan Y P. A color histogram based people tracking system [ A]. In: Proceeding of the 2001 IEEE international Symposium on Circuits and Systems [ C ], Sydney, Australia, 2001,2 : 137-140.
  • 3Stauffr C, Grimson W. Adaptive background mixture models for real- time tracking [ A ]. In: Proceeding of Computer Vision and Pattern Recognition[ C ] , Ft. Collins, CO, USA, 1999, 2:246-252.
  • 4Zivkovic Z, Heijden F V. Efficient adaptive density estimation per image pixel for the task of background subtraction [ J ]. Pattern Recognition Letters, 2006, 27 (7) : 773- 780.
  • 5Wren C, Azarbayejani A, Darrell T,et al. Pfinder: Real-time tracking of the human body [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7) :780-785.
  • 6Bouh T E, Micheals R J, Gao X, et al. Into the woods: Visual surveillance of non-cooperative and camouflaged targets in complex outdoor settings [ J]. Proceedings of the IEEE, 2001, 89 (10) : 1382-1402.
  • 7Buxton B. Early Image Processing Structural Techniques Motivated by Human Visual Response [ D]. Guildford, Surrey, UK: University of Surrey, 1984.
  • 8l,i L, Luo R. Context-controlled adaptive background subtraction [C/O] //Proc of IEEE Int Workshop on Performance Evaluation of Tracking and Surveillance, 2006: al-a8. E2009-12-oa3. http://www, cvg. rdg. ac. uk/PETS2006/ PETS2006 PROCEEDINGS. pdf.
  • 9Wren C, Azarbayejani A. Pfinder: Real-time tracking of the human body [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780-785.
  • 10Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction [J]. Pattern Recognition, 2004, 2 (17) : 28-31.

共引文献15

同被引文献37

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部