期刊文献+

基于视频分析的车站客流计数研究

Research on Passenger Flow Counting in Stations Based on Video Analysis
在线阅读 下载PDF
导出
摘要 基于视频分析,对实时获取车站的客流量的方法进行了研究。对获得的视频图像进行了背景分离以及补偿填充与合并操作,设计了一种改进的Hough变换算法,并引入重合圆判断条件,以此提取人体头部区域的类圆形特征,采用基于区域的跟踪方法以及计数线的方法实现目标的跟踪计数。通过实验分析得到,采用所提计数方法,识别出每帧图像的平均时间约为193 ms,识别的准确率达到了92.33%,造成误差的主要原因为误检外物类圆特征,其误差率约为6.67%,较为符合实际车站客流计数的应用需求。 In order to obtain the passenger flow at the station in real time,this paper studies it based on video analysis.The background separation and compensated filling and merging of the obtained video images are done.An improved Hough transform algorithm is designed,and the coincident circle criterion is introduced to extract the circular-like features of human head area.The area-based tracking method and the counting line method are used to achieve the target tracking count.Through experimental analysis,using the counting method in this article,the average time to recognize each frame of image is about 193 ms,and the recognition accuracy rate reaches 92.33%.The main cause of the error is the misdetection of the foreign object circle feature,and the error rate It is about 6.67%,which is more in line with the application requirements of actual station passenger flow counting.
作者 陶征勇 宗起振 李佑文 肖振远 党聪 TAO Zhengyong;ZONG Qizhen;LI Youwen;XIAO Zhenyuan;DANG Cong(Nanjing Guodian Nanzi Rail Transit Engineering Co.,Ltd.,Nanjing 210000,China)
出处 《微型电脑应用》 2023年第5期103-106,128,共5页 Microcomputer Applications
关键词 客流计数 背景分离 补偿填充与合并 改进的Hough变换 重合圆 passenger flow counting background separation compensation filling and merging improved Hough transform coincidence circle
作者简介 陶征勇(1994-),硕士,助理工程师,研究方向为图像识别、智能检测与控制;宗起振(1976-),硕士,高级工程师,研究方向为电力设备在线监测及故障检修领域;李佑文(1985-),硕士,高级工程师,研究方向为数据挖掘技术、智慧城轨、智慧车站;肖振远(1994-),硕士,助理工程师,研究方向为机器视觉;党聪(1993-),硕士,助理工程师,研究方向为图像识别。
  • 相关文献

参考文献7

二级参考文献51

  • 1秦卫华,胡飞,蔡小斌.基于递推加权最小二乘法的多目标跟踪算法[J].计算机测量与控制,2005,13(8):840-842. 被引量:9
  • 2刘万春,刘建君,朱玉文,陈小春.一种实时高速的八连通区域填充算法[J].计算机应用研究,2006,23(6):177-179. 被引量:19
  • 3田京雷,毕胜.基于视频的客流计数系统的研究[C].第十二届全国图象图形学学术会议论文集.2005年:278-282.
  • 4Rabaud V,Belongie S.Counting crowded moving objects[A].In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].New York,NY,USA,2006:705-711.
  • 5Stauffer c,Grimson W E L.Learning patterns of activity using real -time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747-757.
  • 6Dalal N,Triggs B.Histograms of oriented gradients for human detection[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].San Diego,CA,USA,2005:886-893.
  • 7Yang T,Li S.Z,Pan Q,et al.Real-time multiple objects tracking with occlusion handling in dynamic scenes[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].San Diego,CA,USA,2005:970-975.
  • 8Kim Z.W.Real time object tracking based on dynamic feature grouping with background subtraction[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Anchorage,AK,USA,2008:1-8.
  • 9李衡宇,何小海,吴炜,杨晓敏.基于计算机视觉的公交车人流量统计系统[J].四川大学学报(自然科学版),2007,44(4):825-830. 被引量:9
  • 10K Terada, D Yoshida, S Oe, et al. A Method of Counting the Passing People by Using the Stereo Images [C]//Proc. Intl. Conf. of Image Processing. Los Alamitos, California, USA: IEEE Computer Society, Oct, 1999, Vol. 2: 338-342.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部