期刊文献+

一种用多项式曲线逼近有理曲线的新方法 被引量:2

A new method for approximation of rational curves by parametric polynomial curves
在线阅读 下载PDF
导出
摘要 研究了用多项式曲线逼近有理曲线的新方法,利用结式将有理曲线参数方程转化为隐式代数方程,然后将逼近问题转化为一个以多项式为目标函数的优化问题,求解该问题得到待定参数的值,从而确定多项式曲线.数值算例表明,该方法计算简便,具有较好的逼近效果,且使得利用Hausdorff距离定义的曲线间逼近误差较小. A new method for approximation of rational curves by polynomial curves is proposed. The parametric equation of the rational curve can be transformed into an implicit algebraic equation through the resultant method. Then the approximation problem is transformed into an optimization problem with polynomial objective function. Solve this problem to get the parameters so that the polynomial curve is determined. Numerical examples show that our method is simpler in calculating and have better approximation results. Additionally, We obtain smaller error between the curves defined by Hausdorff distance.
机构地区 宁波大学理学院
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2015年第1期21-27,共7页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(11101230 11371209) 浙江省自然科学基金资助项目(LY13A010013) 宁波大学学科项目资助(XKL11D2051)
关键词 有理曲线 BÉZIER曲线 结式 HAUSDORFF距离 rational curve Bezier curve resultant Hausdorff distance
作者简介 杨连喜(1987-),男,硕士研究生,主要从事计算几何研究. 通信作者,E-mail:xuehendong@nbu.edu.cn.
  • 相关文献

参考文献18

  • 1FARIN G. Curves and Surfaces for Computer Aided Ge- ometric Design, A Practical Guide[M]. 5th ed. San Diego: Academic Press, 2002.
  • 2DE BOOR C, HOLLIG K, SABIN M. High accuracy geometric Hermite interpolation [J] Computer Aided Geometric Design, 1987, 4(4) : 269-278.
  • 3SEDERBERG T W, KAKIMOTO M. Approximating rational curves using polynomial curves [J]. FARIN G. NURBS for Curves and Surface Design. Philadel- phia: SIAM, 1991: 149-158.
  • 4WANG Guojin, SEDERBERG T W, CHEN Falai. On the convergence of polynomial approximation of ration- al functions [J]. Journal of Approximation Theory, 1997, 89(3): 267-288.
  • 5LIU Ligang, WANG Guojin. Recusive formulae for hermite polynomial approximations to rational Bezier curves [C]// Proceedings of Geometric Modeling and Processing 2000 : Theory and Applications. Hong Kong: IEEE Computer Society Press, Los Alamitos, 2000: 190-197.
  • 6CHEN Jie, WANG Guojin. Hybrid polynomial ap- proximation to higher derivatives of rational curves [J]. Journal of Computational and Applied Mathemat- ics, 2011, 235(17):4925-4936.
  • 7KIM H J, AHN Y J. Good degree reduction of B6zier curves using Jacohi polynomials [J]. Computers & Mathematics with Applications, 2000, 40 ( 10-11 ) : 1205-1215.
  • 8AHN Y J. Using Jacobi polynomials for degree reduc- tion of B6zier curves with Ck-constraints[J]. Comput- er Aided Geometric Design, 2003, 20(7):423-434.
  • 9CHEN Guodong, WANG Guojin. Optimal multi-de- gree reduction of B6zier curves with constraints of end- points continuity [J]. Computer Aided Geometric De- sign, 2002, 19(6) :365-377.
  • 10康宝生,石茂,张景峤.有理Bézier曲线的降阶[J].软件学报,2004,15(10):1522-1527. 被引量:18

二级参考文献52

  • 1徐宗本,高勇.遗传算法过早收敛现象的特征分析及其预防[J].中国科学(E辑),1996,26(4):364-375. 被引量:99
  • 2秦开怀,吴边,关右江,葛振州.三维单纯形划分的遗传算法[J].中国科学(E辑),1997,27(1):67-74. 被引量:5
  • 3Sederberg T W.Implicit and Parametric Curves and Surfaces for Computer Aided Geometric Design[D].West Lafayette,USA:Purdue University,1983.
  • 4Sederberg T W,Anderson D,Goldman R.Implicit representation of parametric curves and surfaces[J].Computer Vision,Graphics,and Image Processing,1984,28(1):72-84.
  • 5Buchberger B.Bruno Buchberger's PhD thesis 1965:An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal[J].Journal of symbolic Computation,2006,41(3):475-511.
  • 6Buchberger B.Applications of Grobner bases in nonlinear computational geometry[M]// Kapur D,Mundy J.Geometric Reasoning.Cambridge,USA:MIT Press,1989:413-446.
  • 7Cox D,Little J,O'Shea D.Ideas,Varieties and Algorithms:An Introduction to Computational Algebraic Geometry and Commutative Algebra[M].New York,USA:Springer-Verlag,1992.
  • 8Li Z.Automatic Implicitization of Parametric Objects[J].MM Research Preprints,1989,4:54-62.
  • 9Sederberg T W,Chen F.Implicitization using moving curves and surfaces[C]//Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques.New York,NY,USA:ACM,1995:301-308.
  • 10Cox D,Sederberg T W,Chen F.The moving line ideal basis of planar rational curves[J].Computer Aided Geometric Design,1998,15 (8):803-827.

共引文献24

同被引文献15

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部