期刊文献+

一种求解典型JSP的改进离散粒子群优化算法 被引量:4

Improved discrete particle swarm optimization algorithm for typical Job-Shop scheduling problem
在线阅读 下载PDF
导出
摘要 针对NP-hard性质的作业车间调度问题,设计了一种改进的离散粒子群优化算法。引入遗传算法交叉算子和变异算子来实现粒子的更新,并将变异思想和模拟退火算法思想融入该算法中对全局最优粒子的邻域进行局部搜索,很好地防止了算法出现早熟收敛。通过将该算法和标准粒子群优化算法用于求解典型JSP,计算结果对比表明,改进的算法具有很强的全局寻优能力;就综合解的质量和计算效率而言,改进算法优于标准粒子群优化算法。同时,将该算法结果与文献中其他相关算法结果进行比较,验证了该改进算法的有效性。该算法能够有效地、高质量地解决作业车间调度问题。 According to the Job-Shop scheduling problem which contained NP-hard feature, this paper designed a kind of im- proved discrete particle swarm optimization algorithm. It introduced the crossover operator and the mutation operator of genetic algorithm to realize the particle updating. It embodied the thought of the variation and simulated annealing algorithm into this algorithm to achieve local search for the global optimal particle neighborhood, which prevented premature convergence of the algorithm well. To solve typical JSP through using the improved algorithm and standard particle swarm optimization algorithm, the calculation results showed that the improved algorithm had a strong capability of global optimization. As for the quality and computation efficiency of integrated solution, the improved algorithm was better than the standard particle swarm optimization algorithm. At the same time, comparing the result of the improved algorithm with other related algorithms in literature, it veri- fied the effectiveness of the improved algorithm. This algorithm can solve the JSP in high quality and effectively.
出处 《计算机应用研究》 CSCD 北大核心 2013年第8期2405-2409,共5页 Application Research of Computers
关键词 改进离散粒子群 作业车间调度 遗传算法 模拟退火 局部搜索 improved discrete particle swarm Job-Shop scheduling genetic algorithm(GA) simulated annealing local search
作者简介 吴正佳(1964.),男,湖南黄梅人,教授,博士,主要研究方向为先进制造企业信息系统分析与集成、智能算法理论、设备综合管理与监测; 罗月胜(1986.),男,湖北黄石人,硕士,主要研究方向为智能优化算法、调度优化(1uoyuesheng_98@sina.com); 周玉琼(1987-),女,湖北孝感人,硕士研究生,主要研究方向为智能优化算法、结构优化; 黄绍雄(1987-),男,湖北黄梅人,硕士研究生,主要研究方向为智能优化算法、调度优化.
  • 相关文献

参考文献13

二级参考文献34

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2潘全科,朱剑英.基于进化算法和模拟退火算法的混合调度算法[J].机械工程学报,2005,41(6):224-227. 被引量:21
  • 3彭传勇,高亮,邵新宇,周驰.求解作业车间调度问题的广义粒子群优化算法[J].计算机集成制造系统,2006,12(6):911-917. 被引量:30
  • 4潘全科,朱剑英.解决无等待流水线调度问题的变邻域搜索算法[J].中国机械工程,2006,17(16):1741-1743. 被引量:8
  • 5Kennedy J, Eberhart R C. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neutral Networks. Piscataway: IEEE Press, 1995.. 1 942-1 948.
  • 6Eberhart R C, Shi Y H. Particle swarm optimization: development, applications and resources[C]// Proceedings of 2001 Congress on Evolutionary Computation. Piseataway: IEEE Press, 2001: 81- 86.
  • 7BruckerP.调度:原理、算法和系统[M].张智海,译.北京:清华大学出版社,2007:20-21.
  • 8Jerald J, Asokan P, Prabaharan G, et al. Scheduling optimization of flexible manufacturing systems using particle swarm optimization algorithm [J].25:964-971.
  • 9Xia Weijun, Wu Zhiming, Zhang Wet, et al. A new hybrid optimization algorithm for the job-shop scheduling problem[C]// Proceedings of the 2004 American Control Conference. Piscataway: IEEE Press, 2004: 5 552-5 557.
  • 10Chu C, Proth J M, Wang C. Improving job-shop schedules through critical pairwise exchanges. International Journal of Production Research, 1998, 36(3): 683-694.

共引文献148

同被引文献20

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部