期刊文献+

广义对角占优矩阵的实用新判定 被引量:6

New criteria for generalized diagonally dominant matrices
原文传递
导出
摘要 根据广义对角占优矩阵实用判定中存在的困难,通过对矩阵行标进行划分,利用矩阵自身元素间的关系,得到一组判定条件,避免了利用α对角占优矩阵给出判定条件此类方法中关于α的讨论,改进了相关结果,进一步丰富了广义对角占优矩阵判定的理论,最后通过数值例子验证结果的有效性. In order to overcome the difficult of some methods for generalized diagonally dominant matrices in practice, a new set of practical discriminating method is present by the partition of the row indices. The proposed methods determined the matrix directly make use of the relationship between the matrix elements, which avoided the discussion ofin some similar reference. Finally, a numerical example is given to demonstrate the utility of the given methods.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期637-641,共5页 Journal of Yunnan University(Natural Sciences Edition)
基金 黑龙江省教育厅科技项目(12513002)
关键词 对角占优 广义对角占优 α对角占优 diagonally dominant generalized diagonal dominant diagonally dominant
作者简介 许洁(1980-),女,吉林人,讲师,主要从事矩阵代数方面的研究.E—mail:aqie990132@126.com 通信作者:孙玉祥(1948-),男,吉林人,教授,硕士生导师,主要从事矩阵代数方面的研究.
  • 相关文献

参考文献11

二级参考文献52

共引文献70

同被引文献45

  • 1黄廷祝.非奇H矩阵的简捷判据[J].计算数学,1993,15(3):318-328. 被引量:198
  • 2徐映红,刘建州.广义严格对角占优矩阵的一组判定条件[J].工程数学学报,2005,22(4):733-736. 被引量:11
  • 3VARAHJ M.A lower bound for the smallest singular value of a matrix [ J ] .Linear Algebra Appl, 1975,11:3-5.
  • 4LI W. On Nekrasov matrices [ J ]. Linear Algebra Appl, 1998,28 : 187-86.
  • 5LI Y T,CHEN F B,WANG D F.New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse [ J ].Linear Algebra Appl, 2009,430:1 423-1 431.
  • 6NENAD M.Upper bounds for the infinity norm of the inverse of SDD and S-SDD matrices[ J] .Journal of Computational and Applied Mathematics, 2007,206: 666-678.
  • 7LI W.The infinity norm bound for the inverse of nonsingular diagonal dominant matrices [ J ]. Applied Mathematics Letters, 2008,21 : 258-263.
  • 8CHENG G L, HUANG T Z.An upper bound for A-1of strictly diagonally dominant M-matrices[ J] .Linear Algebra Appl, 2007,426:667-673.
  • 9WANG P. An upper bound for A- 1 of strictly diagonally dominant M- matriees [ J ]. Linear Algebra Appl, 2009,431 : 511 - 517.
  • 10HUANG T Z, ZHU Y. Estimation of for weakly chained diagonally dominant M- matrix [ J ]. Linear Algebra Appl. 2010,431 : 670-677.

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部