期刊文献+

基于EKF-SSM的齿轮箱剩余寿命预测 被引量:4

RESEARCH ON AN GEARBOX RESIDUAL LIFE PREDICTION APPROACH BASED ON EKF-SSM
在线阅读 下载PDF
导出
摘要 齿轮箱的剩余寿命预测为维修人员做出维修更新决策提供重要信息。为解决在缺少历史数据和非线性非平稳运行状态下的齿轮箱剩余寿命预测难题,提出一种基于数据驱动的齿轮箱的剩余寿命方法。该方法首先根据齿轮箱振动信号特征值,通过状态空间模型(State Space Model,SSM)建立齿轮箱退化状态与特征值之间的关系,来描述齿轮箱的非线性动态变化。其次,当获取到新的信号时,通过扩展卡尔曼滤波(Extend Kalman Filter,EKF)估计准确的模型状态,EM算法(Experience Maximization,EM)估计状态空间模型的参数,根据更新的状态和模型递推预测未来特征值到达故障阈值的时间,从而估计出齿轮箱的剩余寿命。最后,运用齿轮箱全寿命试验数据对预测模型进行检验,实验结果表明该方法能利用实时监测的状态数据准确的预测齿轮箱的剩余寿命,具有较强的工程使用价值和通用性。 An efficient remaining useful life (RUL) can provide key information to form a maintenance and replacement strategies of gearbox. To solve remaining useful life prediction problems of nonlinear and non-stationary process of components, a data-driven approach is presented. The approach constructs a state space model (SSM) to describe degradation evolution process ; uses extend kalman filter to estimate state distribution in SSM and take the Expectation-Maximization (EM) algorithm to update parameters. Relaying on measured data, the time to reach the critical value is determined by estimating the distribution of the remaining useful life by using the estimated nonlinear model. A practical case study of run-to-failure gearbox is present in the last, the results show the approach accurately estimating remaining useful life of gearbox.
出处 《机械强度》 CAS CSCD 北大核心 2014年第4期614-619,共6页 Journal of Mechanical Strength
基金 "十二五"武器预先研究项目(51327020101)~~
关键词 状态空间模型 EM算法 扩展卡尔曼滤波 剩余寿命 State space model EM algorithm Extend kalman filtering Remaining useful life prediction
作者简介 林国语,男,1988年11月生,福建漳州人,汉族,硕士研究生,研究方向为基于状态的维修,装备维修工程学。
  • 相关文献

参考文献20

  • 1丰田利夫.设备现场诊断的开展方法[M].北京:机械工业出版社,1985.
  • 2J Z Sikorska, M Hodkiewicz, L Ma, Prognostic modelling options for remaining useful life estimation by industry [ J ]. Mechanical Systems and Signal Processing, 2011,25 : 1803-1836.
  • 3Aiwina Heng, Sheng Zhang, Andy C T, et al. Rotating machinery prognostics: State of the art, challenges and Opportunities [J ]. Mechanical Systems and Signal Processing, 2009,23:724-739.
  • 4Xiao-Sheng Si, Wenbin Wang, Chang-Hua Hu, et al. Remaining useful life estimation - A review on the statistical data driven approaches [ J ]. European Journal of Operational Research, 2011, 21 : 1-14.
  • 5胡殿印,王荣桥,邓俊.基于有限元方法的裂纹扩展寿命预测[J].机械强度,2009,31(2):264-268. 被引量:17
  • 6Eric Bechhoefer, Steve Clarkl, David He. A State-Space Model for Vibration Based Prognostics [ C ]. Annual Conference of the Prognostics and Health Management Society, 2010:130-133.
  • 7A Harvey, S J Koopman, N Shephard. State Space and Unobserved Component Mode/s: Theory and Applicatiols [ M ]. Cambridge University Press, 2004:3-26.
  • 8Maria Carmen Carnero. D J Pedregal, Forecasting tubine problems by means of the state space framework [ J ]. Journal of loss prevention in the process industries, 2011,24:432-439.
  • 9Pulkkinen U, A stochastic model for wear prediction through condition monitoring [ J ]. Operational reliability and systematicmaintenance, 1991,2:23-43.
  • 10Candy J V. Bayesian Signal Processing: Classical, Modern, and Particle Filtering Methods [ M ]. John Wiley & Sons, Hoboken, 2009 : 1-3.

二级参考文献27

  • 1邹小理.随机超载下疲劳裂纹扩展的模拟计算[J].机械强度,2004,26(6):680-682. 被引量:3
  • 2刘莎,张芳.基于ANSYS有限元软件裂纹扩展模拟[J].化工装备技术,2006,27(1):54-57. 被引量:12
  • 3《中国航空材料手册》编辑委员会.中国航空材料手册[M].2版.北京:中国标准出版社,2002.
  • 4Chiew S P, Lie S T, Lee C K, et al. Stress intensity factors for a surface crack in a tabular T-joint [ J].International Journal of Pressure Vessels and Piping, 2001, 78: 677-685.
  • 5Cao J J, Yang G J, Packer J A, et al, Crack modeling in FE analysis of circular tubular joints[ J ]. Engineering Fracture Mechanics, 1998, 61: 537-553.
  • 6Bowness D, Lee M M K. Prediction of weld toe magnification factors for semi-elliptical cracks in T-butt joints [ J]. International Journal of Fatigue, 2000, 22: 369-387.
  • 7孙大飞,Dempster A P, Laird N M, et al. Maximum likelihood from Incomplete data via the EM algorithm[J ]. Journal of the Royal Statistical Society, Series B, 1997,39(1) :1-38.
  • 8Meng X L, Rubin D B. Recent Extension to the EM algorithm[M]. Bayesian Statistics 4. Oxford: Oxford University Press, 1992: 307 - 320.
  • 9Andrieu C,Doucet A. Online Expection- Maximization Type Algorithms for Parameter Estimation in General State Space Models[C]//in Proc. IEEE Int. Conf. Aooustics, Speech, and Signal Processing. [s. l. ] : [s. n. ] ,2003:69- 72.
  • 10贾沛璋,朱征桃.最优估计及其应用[M].北京:科学出版社,1994.

共引文献84

同被引文献38

引证文献4

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部