期刊文献+

用于无线传感网的低功耗集成电路技术(英文) 被引量:4

Low Power Integrated Circuit Technologies in Wireless Sensor Networks
在线阅读 下载PDF
导出
摘要 在传统集成电路(IC)的低功耗设计方法基础上,提出3种低功耗技术,并实现无线传感网传感器节点,作为实例验证。在系统级,提出联合编译技术的优化策略以及为无线传感网提供特殊低功耗模式的硬件架构。在电路级,基于集成电路算子设计方法学,考虑到在算法映射阶段时钟布局,提出时钟算子。以上技术均通过一个无线传感网传感器节点的低功耗设计实例来验证。测试结果显示,使用新提出的3种方法,在深度睡眠模式下,传感器节点芯片功耗为167μW,板级功耗可以达到1.035 mW。 Base on traditional integrated circuit ([C) low power methods, the authors propose three low power technologies for further research and take an implementation of WSN sensor node as an example. At system level, the authors present an optimum scheme combined with compiling technology and a hardware structure which provides special low power modes for WSN. At circuit level, considering clock placement in arithmetic mapping phase, clock operators in collaboration with IC operator design methodology (ODM) is proposed. A low power design of WSN sensor node is implemented to verify the low power technologies presented above. The testing results show that WSN sensor node consumes 167 μW at chip level and PCB system 1.035 mW at PCB system level in deep sleep mode by the three methods.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第4期664-674,共11页 Acta Scientiarum Naturalium Universitatis Pekinensis
关键词 无线传感网 低功耗设计 集成电路 wireless sensor network low power design integrated circuit
作者简介 E-mail:zhouyh@eda.ac.n
  • 相关文献

参考文献3

二级参考文献49

  • 1Tian Y, Huang R, Zhang X, et al. A novel nanoscaled device concept: quasi-SOI MOSFET to eliminate the potential weaknesses of UTB SOI MOSFET. IEEE Trans Electr Dev, 2005, 52:561.
  • 2Zhou F L, Huang R, Wu D K, et al. Fabrication of 32 nm vertical nMOSFETs with asymmetric graded lightly doped drain structure. J Electrochem Soc, 2008, 155:H202- H204.
  • 3Xu X Y, Wang R S, Huang R, et al. High-performance BOI FinFETs based on bulk-silicon substrate. IEEE Trans Electr Dev, 2008, 55:3246.
  • 4Tian Y, Huang R, Wang Y Q, et al. New self-aligned silicon nanowire transistors on bulk substrate fabricated by epi-free compatible CMOS technology: Process integration, experimental characterization of carrier transport and low frequency noise. In: IEEE International Electron Devices Meeting, 2007. 895.
  • 5Wang Y Y, ed., Huang R, Zhang X, Liu J H. Green Micro/Nano Electronics. Chap. 5. Beijing: Science Press, 2010. 311-349.
  • 6Reddick W M, Amaratunga G A J. Silicon surface tunnel transistor. Appl Phys Lett, 1995, 67:494.
  • 7Liu H C, Huang R, Wang Z H. Investigation into the output characteristics and improvement of operation margin of IMOS (impact ionization MOS) devices. In: ECS Transactions, 2009. 21.
  • 8Nagaraj N S, Hunter W R, Chidambaram P R, et al. Impact of interconnect technology scaling on SOC design methodologies. In: Proceedings of the IEEE International Interconnect Technology Conference, 2005. 71-73.
  • 9Wang Y Y, ed., Li S W, Cheng Y H, Song F B, et al. Green Micro/Nano Electronics. Chap. 4. Beijing: Science Press. 2010. 250.
  • 10Assaderaghi F, Sinitsky D, Parke S, et al. A dynamic threshold voltage MOSFET (DTMOS) for ultra-low voltage operation. In: International Electron Devices Meeting (IEDM '94), 1994. 809-812.

共引文献13

同被引文献26

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部