期刊文献+

利用独立性约束非负矩阵分解的高光谱解混算法 被引量:2

Hyperspectral unmixing algorithm using the independent constrained nonnegative matrix factorization
在线阅读 下载PDF
导出
摘要 为了克服经典非负矩阵分解目标函数的非凸性引起的局部极小值的影响,获得高光谱混合像元分解的最优解,引入端元光谱数学期望的四阶累积量和负熵的约束,提出一种端元独立性约束条件下的非负矩阵分解的高光谱混合像元分解算法(I-NMF)。非负矩阵分解采用投影梯度迭代方法。I-NMF算法既利用了非负矩阵分解的优点,又考虑了端元光谱的独立性,并且适用于无纯像元的混合像元分解。模拟和实际数据实验表明,I-NMF算法能够精确地进行混合像元分解,且抗噪声能力较好。 In order to overcome the drawbacks of local minima caused by non-convexity of the classical nonnegative matrix factorization(NMF)objective function,and to achieve the optimal solution of hyperspectral unmixing,a new hyperspectral unmixing algorithm based on the NMF of independently constrained endmember(I-NMF)is pro-posed by introducing the constraints of the fourth order cumulant of endmember spectrum mathematical expectation and negentropy. Projected gradient is utilized as the iterative method for the NMF. The proposed I-NMF algorithm not only takes advantage of the NMF but also considers the independence of the endmember spectra,and is suitable for mixed pixel decomposition of non pure pixels. Simulation and real data experiments show that the I-NMF algo-rithm can accurately decompose mixed pixels,and the anti-noise ability is superior.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2014年第5期637-641,共5页 Journal of Harbin Engineering University
关键词 高光谱混合像元分解 非负矩阵分解 独立性 四阶累积量 负熵 hyperspectral unmixing nonnegative matrix factorization (NMF) independence independence fourth order cumulant negentropy
作者简介 杨秀坤(1971-),女,教授,博士生导师; 王东辉(1974-),男,助理研究员,博士研究生通信作者:王东辉,E-mail:wangdonghui@hrbeu.edu.cn.
  • 相关文献

参考文献14

二级参考文献54

  • 1张伟,杜培军,张华鹏.基于神经网络的高光谱混合像元分解方法研究[J].测绘通报,2007(7):23-26. 被引量:4
  • 2吴波,张良培,李平湘.高光谱端元自动提取的迭代分解方法[J].遥感学报,2005,9(3):286-293. 被引量:17
  • 3赵慧洁,李娜,贾国瑞,董超.改进独立成分分析在高光谱图像分类中的应用[J].北京航空航天大学学报,2006,32(11):1333-1336. 被引量:6
  • 4Lee D D, Seung H S. Learning the Parts of Objects by Non-negative Matrix Factorization[J]. Nature, 1999, 401(6755): 788-791.
  • 5Guillamet D, Vitria J, Schiele B. Introducing a Weighted Non-negative Matrix Factorization for Image Classification[J]. Pattern Recognition Letters, 2003, 24(14): 2447-2454.
  • 6Paura V P, Piper J, Plemmons R J. Nonnegative Matrix Factorization for Spectral Data Analysis[J]. Linear Algebra and Its Applications, 2006, 52(1): 29-47.
  • 7Hoyer P O. Non-negative Matrix Factorization with Sparseness Constraints[J]. Journal of Machine Learning Research, 2004, 37(5): 1457-1469.
  • 8Pascual-Montano A, Carazo J, Kochi K, et al. Nonsmooth Nonnegative Matrix Factorization[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006, 28(3): 403-415.
  • 9NascimentoJ DiasJ.定点成分分析:一种高光谱解混的快速算法.IEEE地球科学与遥感汇刊,2005,43(4):898-910.
  • 10WangJ ChangC.独立分量分析在高光谱图像端元提取和丰度量化中的应用.IEEE地球科学与遥感汇刊,2006,44(9):2601-2616.

共引文献71

同被引文献4

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部