期刊文献+

基于快速非负矩阵分解和RBF网络的高光谱图像分类算法 被引量:3

A Hyper-spectral Image Classification Algorithms Based on Quick Non-negative Matrix Factorization and RBF Neural Network
原文传递
导出
摘要 提出一种处理AVIRIS高光谱图像数据的计算机分类算法。首先采用投影梯度(ProjectedGradient)改进的非负矩阵分解(NMF)方法对高光谱数据进行特征提取,大大降低了分解过程中两个子迭代问题的时间复杂度,而后利用径向基函数神经网络(RBFNN)分类器对提取结果进行分类。结果表明,与传统NMF和主成分分析相比,PGNMF-RBF算法消耗时间最少,分类精度最高,6类地物的分类精度达到83.34%。该算法在保留非负矩阵分解明确物理意义的基础上,获得了更快的分解速度和更高的分类精度,在高光谱图像分类领域具有较大的应用潜力。 A new method combined Non-negative Matrix Factorization (NMF) with Projected Gradient (PG) is proposed for hyper-spectral image classification. Projected Gradient method demonstrates much faster convergence than the popular multiplicative update approach in the iteration process of two subproblems from NMF thus effectively maintains higher classification accuracy than traditional methods; RBF neural network achieves higher accuracy and faster classification process compared to BP network. The new method combines the advantages of the above two, applying PGNMF for feature extraction and RBFNN as classifier. The experiment shows that compared to traditional NMF and PCA,PGNMF-RBF has higher accuracy for classification and less time consumption. The classification accuracy for 6 classes reaches 83.34%. This paper demonstrates PGNMF-RBF an effective and promising method in hyper-spectral image classification.
出处 《遥感技术与应用》 CSCD 北大核心 2009年第3期385-390,共6页 Remote Sensing Technology and Application
关键词 投影梯度 非负矩阵分解 RBF神经网络 图像分类 Projected gradient Non-negative matrix factorization RBF neural network Image classification
作者简介 狄文羽(1984-,女,硕士研究生,主要从事遥感图像处理与分析研究。Email:djwenyu@gmail.com。
  • 相关文献

参考文献5

二级参考文献116

共引文献183

同被引文献29

  • 1高兴斌,刘永坦.ISAR目标象的特征提取和特征选择[J].哈尔滨工业大学学报,1994,26(5):77-81. 被引量:6
  • 2许人灿,刘朝军,黄小红,陈曾平.基于超分辨ISAR成像的空中目标自动识别[J].系统工程与电子技术,2006,28(1):46-48. 被引量:10
  • 3高宏娟,潘晨.基于(2D)^2NMF及其改进算法的人脸识别[J].计算机应用,2007,27(7):1660-1662. 被引量:7
  • 4Toumi A,Hoeltzener B,Khenchaf A. Using watersheds segmentation on ISAR image for automatic target recognition[A].Lyon,France:IEEE,2007.285-290.
  • 5Lin Bo,Yan Fengxia,Zhu Jubo. Feature extraction of 2D radar profile via double-sides 2DPCA for target recognition[A].Tianjin,China:IEEE,2009.1-5.
  • 6Lee D D,Seung H S. Learning the parts of objects by non-negative matrix factorization[J].{H}NATURE,1999,(6755):788-791.
  • 7Lin Chinjen. Projected gradient methods for non-negative matrix factorization[J].{H}Neural Computation,2007,(10):2756-2779.
  • 8Zhang Daoqiang,Chen Songcan,Zhou Zhihua. Two-di-mensional non-negative matrix factorization for face representation and recognition[A].Beijing,China:Springer,2005.350-363.
  • 9Kim K T,Seo D K,Kim H T. Efficient classification of ISAR images[J].{H}IEEE Transactions on Antennas and Propagation,2005,(05):1611-1621.
  • 10张玉方,程新文,欧阳平,王冬梅,熊娜.机载LIDAR数据处理及其应用综述[J].工程地球物理学报,2008,5(1):119-124. 被引量:44

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部