期刊文献+

基于非局部理论的黏弹性纳米杆轴向振动与波传播研究 被引量:4

Longitudinal Vibration and Wave Propagation of Viscoelastic Nanorods Based on the Nonlocal Theory
在线阅读 下载PDF
导出
摘要 根据非局部理论和Kelvin黏弹性理论,针对黏弹性纳米杆自由振动和波传播的轴向动力学问题进行研究.首先,推导了黏弹性纳米杆的轴向动力学微分控制方程.然后,通过无量纲化讨论了3种典型边界纳米杆的前三阶振动特性.最后,研究黏弹性纳米杆波的传播问题,导出了圆频率、波速与波数之间的关系.数值结果表明,非局部效应使第一、二阶固有频率持续减小,第三阶频率先增大再减小,出现结构刚度削弱和增强两种趋势.特别地,对于自由端存在集中质量的情形,第二阶频率随着黏性系数增大出现了多值情况,易导致杆件失稳.数值算例还说明了非局部效应的增强可有效降低黏性材料的阻尼效应,产生逃逸频率,使得纵波能够在高波数段传播.另外,黏性系数在低波数段对阻尼比影响可忽略不计,而在高波数段下,黏性系数越大则阻尼比越大. The longitudinal dynamics of viscoelastic nanorods was investigated based on the nonlocal theory and the Kelvin viscoelastic theory,including axial free vibration and wave propagation. Firstly,the partial differential governing equations were derived and then the 1 st 3 vibration properties were discussed under 3 kinds of typical boundary conditions with the dimensionless method. Finally,the relationships between the circular frequency,the wave speed and the wave number were obtained in the problem of wave propagation. The numerical results show that,the small-scale effect makes the 1 st and 2 nd frequencies decrease persistently and the 3 rd frequency increase first and decrease later,which indicates that the nanostructural stiffness is weakened or strengthened. In particular,for a concentrated mass at the free end of the nanorod,the 2 nd frequency has multiple values when the viscoelastic coefficient increases,which may cause instability. The numerical examples also prove that stronger nonlocal effect brings lower damping effect of viscoelastic materials. T he longitudinal wave can propagate at high wave numbers due to occurrence of the escape frequency. The effects of viscoelastic coefficients on the damping ratio may be ignored at low wave numbers,however,be significant at high wave numbers.
作者 唐光泽 姚林泉 李成 季长剑 TANG Guangze;YAO Linquan;LI Cheng;JI Changjian(School of Rail Transportation, Soochow University Suzhou, Jiangsu 215131, P.R. China)
出处 《应用数学和力学》 CSCD 北大核心 2019年第1期36-46,共11页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11572210) 江苏省研究生科研与实践创新计划项目(KYCX17_1983)~~
关键词 轴向振动 波传播 小尺度效应 纳米杆 黏弹性 axial vibration wave propagation small-scale effect nanorod viscoelasticity
作者简介 唐光泽(1994-),男,硕士生(E-mail:20164246007@stu.suda.edu.cn);通讯作者:姚林泉(1961-),男,教授,博士,博士生导师(E-mail:lqyao@suda.edu.cn).
  • 相关文献

参考文献6

二级参考文献103

  • 1陈杰夫,郑长良,钟万勰.电磁波导的辛分析与对偶棱边元[J].物理学报,2006,55(5):2340-2346. 被引量:7
  • 2孙雁,钟万勰.电磁波导的通过谱计算[J].计算力学学报,2006,23(6):663-667. 被引量:3
  • 3虞吉林 郑哲敏.一种非局部弹塑性连续体模型与裂纹尖端附近的应力分布[J].力学学报,1984,16(5):485-494.
  • 4Goeders K M, Colton J S, Bottomley L A. Microcantilevers: sensing chemical interactions via mechanical motion [ J ]. Chemical Reviews, 2008, 108 (2) : 522-542.
  • 5Alvarez M, Lechuga L M. Microcantilever-based platforms as biosensing tools [J]. Analyst, 2010, 135(5): 827-835.
  • 6Eom K, Park H S, Yoon D S, Kwon T. Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles [ J ]. Physics Reports, 2011, 503 (4/ 5) : 115-163.
  • 7Hagan M F, Majumdar A, Chakraborty A K. Nanomechanical forces generated by surface grafted DNAIJ]. The Journal of Physical Chemistry B, 2002, 106(39) : 10163-10173.
  • 8Dareing D W, Thundat T. Simulation of adsorption-induced stress of a microcantilever sensor [J]. Journal of Applied Physics, 2005, 97(4): 043525-1-043526-5.
  • 9Eom K, Kwon T Y, Yoon D S, Lee H L, Kim T S. Dynamical response of nanomechanical re- sonators to biomolecular interactions [ J] Physical Review B, 2007, 76 ( ll ) : 113408-1- 113408-4.
  • 10Huang G Y, Gao W, Yu S W. Model for the adsorption-induced change in resonance frequen- cy of a cantilever[J]. Applied Physics Letters, 2005, 89(4) : 043505-1-043505-4.

共引文献22

同被引文献36

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部