摘要
根据非局部弹性理论,研究压杆稳定性和弹性杆件轴向振动问题。结合三种典型边界条件,推导临界压力及固有频率非局部理论解。该显式解表明,无量纲小尺度参数的增大会使临界压力及固有频率减小。由压杆稳定性算例结果显示,非局部临界压力随着压杆长度的增加而减小,当压杆长度接近宏观尺寸时,临界压力趋于稳定。与经典连续介质力学相比,非局部临界压力及固有频率降低,说明经典力学高估小尺度下压杆受压承载能力及结构振动频率,随着压杆长度的增加,经典解与非局部解趋于一致。
The stability and axial vibration of a compressive bar were investigated through the nonlocal elasticity approach. The explicit solutions of critical pressure and inherent frequency were obtained according to three typical kinds of boundary conditions. It is shown that an increase in a dimensionless small scale parameter causes the critical pressure and inherent frequency to decrease. A numerical example was presented and the result indicates the nonlocal critical pressure decreases with the increase of the length of compressive bars, and critical pressure approaches to a constant when the length is close to macro size. The nonlocal critical pressure and inherent frequency obtained are lower than the results from classical continuum mechanics, namely, the classical mechanics overestimates the critical pressure and inherent frequency of a structure at small scale. With an increase in length of compressive bars, nonlocat results are in good agreement with classical results.
出处
《振动与冲击》
EI
CSCD
北大核心
2013年第5期154-156,162,共4页
Journal of Vibration and Shock
基金
江苏省自然科学基金(BK2010225
BK2012175)
江苏省产学研联合创新资金项目(BY20121 12)
关键词
压杆
临界压力
固有频率
非局部理论
稳定性
compressive bar
critical pressure
inherent frequency
nonlocal theory
stability
作者简介
黄伟国 男,博士,讲师,1981年10月生
通讯作者 李成 男,博士,副教授,1983年10月生