期刊文献+

基于非局部理论的压杆稳定性及轴向振动研究 被引量:10

On the stability and axial vibration of compressive bars based on nonlocal elasticity theory
在线阅读 下载PDF
导出
摘要 根据非局部弹性理论,研究压杆稳定性和弹性杆件轴向振动问题。结合三种典型边界条件,推导临界压力及固有频率非局部理论解。该显式解表明,无量纲小尺度参数的增大会使临界压力及固有频率减小。由压杆稳定性算例结果显示,非局部临界压力随着压杆长度的增加而减小,当压杆长度接近宏观尺寸时,临界压力趋于稳定。与经典连续介质力学相比,非局部临界压力及固有频率降低,说明经典力学高估小尺度下压杆受压承载能力及结构振动频率,随着压杆长度的增加,经典解与非局部解趋于一致。 The stability and axial vibration of a compressive bar were investigated through the nonlocal elasticity approach. The explicit solutions of critical pressure and inherent frequency were obtained according to three typical kinds of boundary conditions. It is shown that an increase in a dimensionless small scale parameter causes the critical pressure and inherent frequency to decrease. A numerical example was presented and the result indicates the nonlocal critical pressure decreases with the increase of the length of compressive bars, and critical pressure approaches to a constant when the length is close to macro size. The nonlocal critical pressure and inherent frequency obtained are lower than the results from classical continuum mechanics, namely, the classical mechanics overestimates the critical pressure and inherent frequency of a structure at small scale. With an increase in length of compressive bars, nonlocat results are in good agreement with classical results.
出处 《振动与冲击》 EI CSCD 北大核心 2013年第5期154-156,162,共4页 Journal of Vibration and Shock
基金 江苏省自然科学基金(BK2010225 BK2012175) 江苏省产学研联合创新资金项目(BY20121 12)
关键词 压杆 临界压力 固有频率 非局部理论 稳定性 compressive bar critical pressure inherent frequency nonlocal theory stability
作者简介 黄伟国 男,博士,讲师,1981年10月生 通讯作者 李成 男,博士,副教授,1983年10月生
  • 相关文献

参考文献14

  • 1刘延柱.弹性杆基因模型的力学问题[J].力学与实践,2003,25(1):1-5. 被引量:32
  • 2Eringen A C, Edelen D G B. On nonlocal elasticity [ J]. International Journal of Engineering Science, 1972, 10 ( 3 ) : 233 - 248.
  • 3Eringen A C. On differential equation of nonlocal elasticity and solutions of screw dislocation and surface waves [ J ]. Journal of Applied Physics, 1983, 54(9) : 4703 -4710.
  • 4虞吉林 郑哲敏.一种非局部弹塑性连续体模型与裂纹尖端附近的应力分布[J].力学学报,1984,16(5):485-494.
  • 5Peddieson J, Buchanan G R, McNitt R P. Application of nonlocal continuum models to nanotechnology [ J ]. International Journal of Engineering Science, 2003, 41 ( 3 - 5) : 305 -312.
  • 6Sun Y G, Zhou Z G. Stress field near the crack tip in nonlocal anisotropic elasticity [ J ]. European Journal of Mechanics A/Solids, 2004, 23(2): 259-269.
  • 7Zhang Y Q, Liu G R, Xie X Y. double-walled carbon nanotubes elasticity [ J ]. Physical Review - 195410. Free transverse vibrations of using a theory of nonlocal B, 2005,71 ( 19 ) : 195404.
  • 8Wang Q. Wave propagation in carbon nanotubes via nonlocal continuum mechanics [ J ]. Journal of Applied Physics,2005, 98(12): 124301 -124306.
  • 9Wang Q, Varadan V K. Vibration of carbon nanotubes studied using nonlocal continuum mechanics E J ]- Smart Materials and Structures, 2006, 15 (2) : 659 - 666.
  • 10Lim C W, Wang C M. Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams [ J ]. Journal of Applied Physics, 2007, 101 (5) : 054312.1 -054312.7.

二级参考文献17

  • 1武际可 黄永刚.弹性曲杆的稳定性问题[J].力学学报,1987,19(5).
  • 2Shi Y, Hearst JE. The Kirchhoff elastic rod, the nonlinear Schroedinger equation, and DNA supercoiling. J Chem Physics, 1994, 101:5186-5200.
  • 3Westcott TP, Tobias I, Olson WK. Elasticity theory and numerical analysis of DNA supercoiling: An application to DNA looping. J Phys Chemistry, 1995, 99:17926-17935.
  • 4Starostin EL. Three-dimensional shapes of looped DNA. Meccanica, 1996, 31:235-271.
  • 5Mesirov JP, Schulten K, Sumners DW. Mathematical Approaches to Biomolecular Structure and Dynamics. New York: Springer, 1996.
  • 6Westcott TP, Tobias I, Olson WK. Modeling self-contact forces in the elastic theory of DNA supercoiling. J Chem Physics, 1997, 107(10): 3967-3980.
  • 7Nizzete M, Goriely A. Towards a classification of Euler-Kirchhoff filaments. J Math Physics, 1999, 40(6):2830-2837.
  • 8Marsden JE. Introducton to Mechanics and Symmetries. New York: Springer, 1994. 287.
  • 9Vielsack P. Spatial bifurcation of a prestressed rod. Trans ASME, J Appl Mech, 1982, 49:443-444.
  • 10Davis MA, Moon FC. 3-D spatial chaos in the elastica and the spinning top: Kirchhoff analogy. Chaos, 1993, 3(1):93-99.

共引文献35

同被引文献77

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部