期刊文献+

一种基于改进FCM的自动图像分割算法 被引量:10

An Automatic Image Segmentation Algorithm Based on Improved FCM
在线阅读 下载PDF
导出
摘要 针对FCM进行图像分割时需要人为确定聚类数的问题,提出一种改进的基于FCM的图像分割算法.该算法先对图像进行4叉树结构的子图分解(即原图等分为2×2的4幅子图,子图再等分为2×2的4幅子图),待子图满足一定条件时进行聚类数为2的FCM聚类分割;然后将分割好的区域根据其大小及相邻区域直方图的巴氏距离进行合并,得到最终的分割结果,从而避免了聚类数目的直接确定.实验结果表明:该算法能够获得很好的分割效果;对子图进行聚类分割减少了每次参与聚类的对象数,从而在一定程度上降低了算法的计算量. The clustering number needs to be determined artificially when image segmentation using FCM is performed. In order to solve this problem,an improved algorithm based on FCM is proposed. In this algorithm,first, a sub-image decomposition of the ori-ginal image is conducted on the basis of quad-tree structure,by which the original image is divided into 2 × 2 sub-images equally and each sub-image is divided into 2 × 2 sub-images equally again until the sub-image satiates certain conditions. Then,the sub-image is segmented by using FCM with the clustering number 2. Moreover,region merging is carried out according to the region area and the Bhattacharyya distance of two adjacent regions’histogram,with the segmentation results being finally obtained without determining the clustering number directly. Experimental results indicate that the proposed algorithm possesses good seg-mentation effectiveness,and that,to some extent,the computation complexity is reduced,because the segmentation using FCM helps reduce the number of samples for each clustering.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第3期1-7,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61372008) 亚热带建筑科学国家重点实验室开放课题(2013KA02)
关键词 图像分割 信息熵 聚类数 FCM FCM image segmentation information entropy clustering number
作者简介 周晓明(1963-),男,教授,主要从事电磁场与信号处理研究.E—mail:zhouxm@scut.edu.cn
  • 相关文献

参考文献17

  • 1Dunn J C. A fuzzy relative of the ISO DATA process and its use in detecting compact well-separated clusters [ J ]. Journal of Cybernetics, 1974,3 ( 3 ) : 32-57.
  • 2Bezdek J C. Pattern recognition with fuzzy objective function algorithms [ M ]. New York : Plenum Press,1981:20-35.
  • 3Bezdek J C. A convergence theorem for the fuzzy iso data clustering algorithms [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980 ,PAMI-2( 1 ) :1-8.
  • 4Kettaf F Z, BI D, Asselin de Beauville J P. A comparison study of image senentation by clustering techniques [ C ]// Proceedings of 3rd International Conference on Signal Pro- cessing. Beijing: Chinese Institute of Electronics, 1996 : 1280-1290.
  • 5Chen M Y, Linkens D A. Rule-base self-generation and simplification for data-driven fuzzy models [ J ]. Fuzzy Sets and Systems,2004,142(2) :243-265.
  • 6Xie X L, Beni G. A validity measure for fuzzy clustering [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13 ( 8 ) : 841 - 847.
  • 7Xie Y, Raghavan V V, Dhatric P, et al. A new fuzzy cluste- ring algorithm for optimally finding granular prototypes [ J]. Approximate Reasoning,2005,40( 1 ) : 109-124.
  • 8Gath I, Geva A B. Unsupervised optimal fuzzy clustering [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11 (7) :773-781.
  • 9Tsekouras G E,Sarimveis H. A new approach for measuring the validity of the fuzzy c-means algorithm [ J ]. Advances in Engineering Software, 2004, 35(8/9) :597-875.
  • 10Bouguessa M, Wang S R. A new efficient validity index for fuzzy clustering [ C ]//Proceedings of the Third In- ternational Conference on Machine Learning and Cyber- netics. Shanghai :The Hong Kong Polytechnic University, 2004 : 26- 29.

二级参考文献33

  • 1宫改云,高新波,伍忠东.基于划分模糊度的聚类有效性函数[J].模式识别与人工智能,2004,17(4):412-416. 被引量:3
  • 2Bezdek J C. Numerical Taxonomy with Fuzzy Sets. Journal of Mathematical Biology, 1974, 1 ( 1 ) : 57 -71.
  • 3Bezdek J C. Cluster Validity with Fuzzy Sets. Journal of Cybernetics, 1974, 3(3) : 58 -72.
  • 4Xie X L, Beni G. A Validity Measure for Fuzzy Clustering. IEEE Trans on Pattern Analysis and Machine Intelligence, 1991, 13 (8) : 841 - 847.
  • 5Wang Weina, Zhang Yunjie. On Fuzzy Cluster Validity Indices. Fuzzy Sets and Systems, 2007, 158(19) : 2095 -2117.
  • 6Dave R N. Validating Fuzzy Partition Obtained through e-Shells Clustering. Pattem Recognition Letters, 1996, 17(6) : 613 -623.
  • 7Chen Minyou, Linkens D A. Rule-Base Self-Generation and Simplification for Data-Driven Fuzzy Models. Fuzzy Sets and Systems, 2004, 142( 1 ) : 243 -265.
  • 8Wu K L, Yang M S. A Cluster Validity Index for Fuzzy Clustering. Pattern Recognition Letters, 2005, 26(9) : 1275 - 1291.
  • 9Fukuyama Y, Sugeno M. A New Method of Choosing the Number of Clusters for the Fuzzy C-Means Method//Proc of the 5th Fuzzy Systems Symposium. Kobe, Japan, 1989 : 247 - 250.
  • 10Pakhira M K, Bandyopadhyay S, Maulik U. Validity Index for Crisp and Fuzzy Clusters. Pattern Recognition, 2004, 37 (3): 487 - 501.

共引文献48

同被引文献72

引证文献10

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部