期刊文献+

一种融合人工免疫系统与AP算法的分类器设计 被引量:5

Design of Classifier Based on Combination of Artificial Immune System and AP Algorithm
在线阅读 下载PDF
导出
摘要 为提高复杂数据分类器的分类性能,结合人工免疫系统(Artificial immune system,AIS)的自适应识别能力与全局搜索能力,以及近邻传播(Affinity propagation,AP)算法自动确定最佳数据类数的能力,提出了一种基于人工免疫系统与近邻传播相结合的分类算法。通过自适应免疫算法,获得反映数据集模式特征的抗体记忆集,然后再利用基于聚类有效性指标的AP算法确定抗体记忆集的最佳聚类数,以此构造分类器。最后,通过人工数据集和UCI基准数据集来测试该分类器。实验结果表明,与直接采用免疫算法和AP算法相比,该算法在分类正确率和识别性能方面均有良好的表现。在与一些经典分类算法的对比实验中,本文算法也表现出较好的竞争力。 To improve the classification performance of complex data classifier, a classification algorithm based on the combination of artificial immune system (AIS) and affinity propagation(AP) algorithm is proposed which combines the global search capability and adaptive recognition of AIS with the capability of automatically determining the optimal number of data classes of AP. The antibody memory set reflecting the characteristics of data set is obtained by adaptive immune algorithm. Then the optimal number of clusters of the antibody memory set is obtained using AP algorithm based on cluster validity index, and a classifier is constructed. Finally, the proposed algorithm is tested on artificial data set and UCI data set. Compared with artificial immune algorithm and AP algorithm, it has a great competitiveness on recognition rate and recognition capability. The algorithm also shows good competitiveness compared with some of the classic classification algorithms.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第2期232-238,共7页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(11078001)资助项目 国家高技术研究发展计划("八六三"计划)(2012AA121602)资助项目
关键词 人工免疫系统 近邻传播算法 K近邻算法 分类 artificial immune system affinity propagation algorithm K-nearest neighbor algorithm classification
作者简介 通信作者:储岳中,男,博士,副教授,1971年生,E—mail:mychu@126.com。
  • 相关文献

参考文献16

  • 1Carter J H. The immune system as a model for pattern recongnition and classificiation[J]. Journal of the American Medical Informatics Association,2000, 7(3) :28-41.
  • 2Castro P D, Coelho G P, Caetano M F, et al. Designing ensembles of fuzzy classification systems: an immune-inspired approach[C]//International Conference on Artificial Immune Systems. Canada: Springer, 2005 : 462-482.
  • 3Sahan S, Polat K, Kodaz H, et al. A new hybrid method based on fuzzy-artificial immune system and K-NN algorithm for breast cancer diagnosis[J]. Computers in Biology and Medicine,2006,37(3):415- 423.
  • 4莫宏伟,吕淑萍,管凤旭,徐立芳,叶秀芬,马忠丽,王辉.基于人工免疫网络记忆的新型分类器研究[J].计算机工程与应用,2004,40(36):28-32. 被引量:17
  • 5Nunes de Castro L, Von Zuben J F. An evolutionary immune network for data clustering[C]//Proceedings of the IEEE SBRN. [S. l.]IEEE,2000:84-89.
  • 6黎昱,黄席樾,周欣.基于免疫聚类与HMM的时序信息系统决策[J].信息与控制,2003,32(5):385-390. 被引量:4
  • 7Frey B J,Dueck D. Clustering by passing messages between data points[J]. Science, 2007,315 (5814) : 972-976.
  • 8肖宇,于剑.基于近邻传播算法的半监督聚类[J].软件学报,2008,19(11):2803-2813. 被引量:165
  • 9储岳中,徐波.基于流形分析与AP算法RBF神经网络分类器[J].华中科技大学学报(自然科学版),2012,40(8):93-97. 被引量:5
  • 10Dudoit S, Fridlyand J. A prediction-based resampiing method for estimating the number of clusters in a dataset[J]. Genome Biology, 2002, 3(7):1-21.

二级参考文献75

  • 1罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 2Hunt J E and Cooke D E. Learning using an artificial immune system [J]. Journal of Network and Computer Applications, 1996, 19(2): 189-212.
  • 3Tang Z, Yamaguchi T, and Tashima K, et al.. Multiple-valued immune network model and its simulations[C]. Proceedings of the 27th International Symposium on Multiple-valued logic, Autigonish, Canada, May 28-30, 1997: 233-238.
  • 4De Castro L N. An evolutionary immune network for data clustering [C].VI Brazilian Symposium on Neural Networks (SBRN'00), Brazil, Jan. 22-25, 2000: 84-89,.
  • 5Timmis J and Neal M. A resource limited artificial immune system for data analysis [J]. Knowledge Based Systems, 2001, 14(3/4): 121-130.
  • 6Neal M. An artificial immune system for continuous analysis of time-varying data[G]. Proceedings of the 1st International Conference on Artificial Immune Systems Canterbury. Canterbury, UK, Sep. 9-11, 2002: 76-85.
  • 7Nasaroui O, Gonzalez F, and Dasgupta D. The fuzzy artificial immune system: Motivations, basic concepts, and application Co clustering and web profiling[C]. Proceedings of the IEEE World Congress on Computational Intelligence, Honolulu, Hawaii, May 12-17, 2002: 711-716.
  • 8Xiong Hao and Sun Cai-xin. Artificial immune network classification algorithm for fault diagnosis of power transformer [J]. IEEE Transactions on Power Delivery, 2007, 22(2): 930-935.
  • 9Cu Dan-zhen, Ai Qian, and Chen Chen. The application of artificial immune network in load classification[C]. DRPT2008, Nanjing, China, Apirl 6-9 2008: 1394-1398.
  • 10Lu Chao and Hu Xiao-guang. Classification of mechanical conditions for HVCBs based on artificial immune network[C]. the 3rd IEEE on Industrial Electronics and Applications (ICIEA2008), Singapore, June 3-5, 2008: 2373-2377.

共引文献227

同被引文献67

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部