期刊文献+

基于节点坐标变量的桁架大位移非线性有限元法

Nonlinear Finite Element Method Solving Large Displacement Problems of Trusses Subjected to Node Coordinate Variable
在线阅读 下载PDF
导出
摘要 为求解桁架大位移问题,提出了一种基于节点坐标变量的非线性有限元法——以杆端节点坐标向量为显函变量写出单元杆端力向量表达式,由单元杆端力向量装配结构非线性平衡方程。求解时,首先根据矩阵微分理论求出单元杆端力向量关于杆端节点坐标向量的导数矩阵,由该导数矩阵装配结构非线性微分平衡方程;然后按照Newton切线法原理建立等效线性逼近方程,引入边界约束条件得到结构节点坐标的迭代公式。研究结果表明:该方法稳定性好、精度高、收敛速度快且简单易用,为求解桁架大位移问题提供了一种有效方法。 In order to solve the large displacement problems of trusses, a nonlinear finite element method was proposed, which used the node coordinate variables as unknowns. An expression ofthe member end force vector was written in terms of member's end coordinates, by which the global nonlinear equilibrium equation was fabricated. In solution, firstly, based on matrixdifferential theory, element derivative matrix was obtained with respect to the member end force vector, by which the global differential nonlinear equilibrium equation was fabricated. Secondly,based on Newton tangent method theory, the global equivalent linear matrix equation was established, then the structure's boundary restraints was introduced, the iterative formulae forstructure node coordinates were obtained. The research results show that the present method has good stability, high precision, quick convergence and easiness in use, and is very efficient forsolving the large displacement problems of trusses.
作者 刘树堂
出处 《建筑科学与工程学报》 CAS 北大核心 2014年第2期138-142,共5页 Journal of Architecture and Civil Engineering
关键词 非线性分析 Newton切线法 大位移 有限元法 平面扁桁架 节点 nonlinear analysis Newton tangent method large displacement finite element method planar flat truss node
作者简介 刘树堂(1959-),男,辽宁锦州人,教授,工学硕士,E—mail:lquuth@163.com。
  • 相关文献

参考文献6

  • 1OHKUBO S, WATADA Y, FUJIWAKI T. Nonlinear Analysis of Truss by Energy Minimization[J]. Computers & Structures, 1987,27 ( 1 ) : 129-145.
  • 2KAZBERUK A, MIEDZIALOWSKI C Z, TRIBILLO R. Finite Element Discretization by Minimization of Elastic Strain Energy Method[J]. Finite Elements in Analysis and Design, 1999,32(2) :63-70.
  • 3GRECOA M, GESUALDOA F A R, VENTURINIB W S. Nonlinear Positional Formulation for Space Truss Analysis[J]. Finite Elements in Analysis and Design, 2007,42(12) : 1079-1086.
  • 4LIU S T,LONG Q L. A New Method Tracing Load- deflection Equilibrium Path of a Doubly Nonlinear Truss [J]. Applied Mechanics and Materials, 2012, 166-169:68-72.
  • 5孙焕纯,许强,龙武智.桁架结构几何大变形分析的精确方法[J].应用力学学报,2009,26(1):45-50. 被引量:4
  • 6许强,陈庆,孙焕纯.大跨度桁架几何大变形结构分析的一种数值方法[J].土木工程学报,2009,42(1):16-22. 被引量:2

二级参考文献6

  • 1Knot N S, Kamat M P. Minimum weight design of truss structure with geometric nonlinear behavior[J]. American Institute of Aeronautics and Astronautics Journal, 1985, 23(1): 139-144
  • 2侯昶.大跨度钢桁架优化设计.基建优化,1983,1:28-32.
  • 3赵发光.山西省体委体育场挑棚网架设计小节[C]//第四届空间结构学术交流会论文集,1988,1:24-30
  • 4Knot N S, Kamat M P. Minimum weight design of truss structure with geometric nonlinear behavior[J]. AIAA Journal, 1985, 23(1) :139-144.
  • 5孙焕纯,王跃方,刘春良.桁架结构稳定分析的几何非线性欧拉稳定理论[J].计算力学学报,2007,24(4):539-544. 被引量:10
  • 6孙焕纯,王跃方,刘春良.扁桁架结构稳定分析几何非线性临界点-欧拉理论[J].大连理工大学学报,2007,47(5):629-633. 被引量:3

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部