期刊文献+

桁架结构几何大变形分析的精确方法 被引量:4

Accurate Algorithm for Geometrically Large Deflection Analysis of Truss Structures
在线阅读 下载PDF
导出
摘要 以往对桁架结构的大变形非线性分析,都是应用最小势能原理建立关于节点位移的非线性联立平衡方程,求解的工作量大,尤其对多自由度的大型复杂桁架更为突出。为了克服这个困难,本文采用两步交替迭代线性逐步逼近法,使平衡状态与变形状态协调统一,建立并求出变形后的平衡方程及其解。第一步,由已知杆件内力建立计算节点位移的连续方程并求解;第二步,由已知节点位移建立计算杆件内力的平衡方程并求解。通过多次迭代求得平衡状态与变形状态协调统一的非线性大变形分析的精确解。若干例题计算证明,本法是有效、精确的。尤其是对几何大变形桁架结构的优化设计,可将结构分析的迭代过程与优化过程相结合,省去了多次结构重分析的迭代过程,只在一次结构分析的迭代过程中即可完成优化设计,大大节省了时间。本法对扁桁架尤其有用。 So far,accurate algorithm for nonlinear structure analysis of truss structures undergoing large deflection following the nonlinear minimum principle of potential energy has often been adopted to formulate the nonlinear equilibrium equations about the nod displacements,it is obviously difficult for large scale complex truss structures.Here a linear approximating method with two steps of alternative iteration was adopted to make the equilibrium and deformation states harmonic and identical.In the first step,formulating the continuity equations for calculation of the nod displacements from the known axial force of members;and in the second step,formulating the equilibrium equations for computing the axial forces of members from known nod displacements.And the solution of nod displacements and axial forces of members were found respectively in each step.the accurate nonlinear solutions of nod displacement and axial forces of members at a unified state were solved finally by multi-round ite rations.Two examples show that this algorithm is effective and accurate,especially for the optimum design of truss structures undergoing large deflection.
出处 《应用力学学报》 CAS CSCD 北大核心 2009年第1期45-50,共6页 Chinese Journal of Applied Mechanics
基金 大连理工大学211工程建设项目资助
关键词 桁架结构 扁桁架 大变形 结构分析 最小势能原理 truss structure,shallow truss structure,geometrically large deflection,structural analysis,nonlinear minimum principle of potential energy
作者简介 孙焕纯,男。1927年生,大连理工大学,教授。E—mail:xuqiang@tongji.edu.cn
  • 相关文献

参考文献3

二级参考文献16

  • 1孙焕纯,王跃方.对桁架结构稳定分析经典理论的讨论[J].计算力学学报,2005,22(3):316-319. 被引量:14
  • 2孙焕纯,王跃方,刘春良.桁架结构稳定分析的几何非线性欧拉稳定理论[J].计算力学学报,2007,24(4):539-544. 被引量:10
  • 3LEVY R.PERNG H S.Optimization for nonlinear stability[J].Computer & Structures,1988,30 (3):529-535.
  • 4MANICKARAJAH D,XIE Y M,STEVEN G P.Optimum design of frames with multiple constraints using an evolutionary method[J].Computer & Structures,2000,74:731-741.
  • 5KHOT N S.Nonlinear analysis of optimized structures with constraints on system stability[J].AIAA Journal,1989,21 (8).
  • 6DONALD L.Dean,Frederick R.Jetter,Analysis for Truss Buckling[A].Proceedings of American Society of Civil Engineers[C].1972,98(8).
  • 7JKOCIVARA M.On the modeling and solving of truss design problem with global stability constraints[J].Struct Multidisc Optim,2002,23:189-203.
  • 8KHOT N S,KAMAT M P.Minimum weight design of truss structures with geometric behavior[J].AIAA,1985,23(1):139-144.
  • 9SEDAGHATI R Tabarrok.Optimum design of truss structures undergoing large deflections subject to a system stability constraints[J].International Journal for Numerical Meth Methods in Engineering,2000,48:421-434.
  • 10KHOT N S,KAMAT M P.Minimum weight design of truss structure with geometric nonlinear behavior[J].AIAA J,1985,23(1):139-144.

共引文献11

同被引文献31

  • 1Zhang Qilin. Incremental finite element solution for nonlinear problems of space trusses[J]. Journal of Constructional Steel Research, 1991, 20: 89-104.
  • 2Greco M, Gesualdo F, Venturini W S, et al. Nonlinear positional formulation for space truss analysis[J]. Finite Elements in Analysis and Design, 2006, 42(12): 1079-1086.
  • 3Shck H J. The force density method for form-finding and computation of general networks [J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(1): 115-134.
  • 4Grundig L. Minimal surface for finding forms of structural membrane[J]. Compters & Structures, 1988, 30(3): 679-683.
  • 5OHKUBO S, WATADA Y, FUJIWAKI T. Nonlinear Analysis of Truss by Energy Minimization[J]. Computers & Structures, 1987,27 ( 1 ) : 129-145.
  • 6KAZBERUK A, MIEDZIALOWSKI C Z, TRIBILLO R. Finite Element Discretization by Minimization of Elastic Strain Energy Method[J]. Finite Elements in Analysis and Design, 1999,32(2) :63-70.
  • 7GRECOA M, GESUALDOA F A R, VENTURINIB W S. Nonlinear Positional Formulation for Space Truss Analysis[J]. Finite Elements in Analysis and Design, 2007,42(12) : 1079-1086.
  • 8LIU S T,LONG Q L. A New Method Tracing Load- deflection Equilibrium Path of a Doubly Nonlinear Truss [J]. Applied Mechanics and Materials, 2012, 166-169:68-72.
  • 9Hormoz T H.Static and dynamic analysis of cable structure by the conjugate gradients method[D]. London:The Polytechnic of Central London,1984.
  • 10Coyette J P,Guisset P.Cable network analysis by a non-linear programming technique[J].Engineering Structures,1988,10(1):41-46.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部