期刊文献+

基于改进的迭代容积卡尔曼滤波姿态估计 被引量:4

Attitude estimation based on improved iterated cubature Kalman filter
在线阅读 下载PDF
导出
摘要 为了充分利用新的量测信息,提高姿态估计的精度,在分析现有迭代滤波策略存在问题的基础上,采用一种新的容积点迭代策略,将其与容积卡尔曼滤波算法相结合,提出了一种改进的迭代容积卡尔曼滤波(improved iterated cubature Kalman filter,IICKF)算法.该算法采用容积数值积分理论近似非线性函数的均值与方差,利用状态扩维理论来解决量测迭代中量测噪声与状态相关的问题,同时利用一种新的容积点迭代策略,即在量测迭代过程中直接采用容积点迭代,避免每步迭代都进行均方根计算来产生容积点,克服传统迭代策略是基于高斯近似产生采样点的局限,有效地降低扩维带来的计算量.仿真结果表明:该算法的估计精度高于乘性扩展卡尔曼滤波(multiplicative extended Kalman filter,MEKF)以及迭代容积卡尔曼滤波(iterated cubature Kalman filter,ICKF)算法,该算法的提出有助于提高姿态估计的精度. To make use of the latest measurement information sufficiency, and to improve the accuracy of attitude estimation, based on the analysis of the current iterated filtering strategy, an improved iterated cubature Kalman filter(IICKF) is presented in this paper by combining a new eubature points iterated strategy with cubature Kalman filter. The filtering algorithm uses the eubature numerical integration theory to calculate the mean and variance of the nonlinear function, utilizing the state augmented method to solve the issue that the state is correlated with the measurement noise in the iterated process. A new cubature points iterated strategy is developed, which can directly iterate the cubature points, and thus avoids to generate cubature points by calculating the mean-squared root. It overcomes the limitation that sampling points are produced by the Gauss approximation in the traditional iterative strategy, which can reduce computational complexity. Simulation results show that IICKF is superior to multiplicative extended Kalman filter and iterated cubature Kalman filter in precision, which indicates that it can help to improve the accuracy of attitude estimation.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2014年第6期116-122,共7页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(61104036) 哈尔滨市科技创新人才研究专项基金项目(RC2014XK009013)
关键词 姿态估计 改进的迭代容积卡尔曼滤波 容积数值积分理论 状态扩维 估计精度 attitude estimation improved iterated cubature Kalman filter cubature numerical integrationtheory state augmented method precision
作者简介 钱华明(1965-),男,教授,博士生导师. 通信作者:黄蔚,huangwei2393@163.com.
  • 相关文献

参考文献16

  • 1LEFFERTS E J,MARKLEY F L,SHUSTER M D.Kalman filtering for spacecraft attitude estimation [J].Journal of Guidance Control and Dynamics,1982,5(5):417-429.
  • 2AHMADI M,KHAYATIAN A,KARIMAGHAEE P.Attitude estimation by divided difference filter inquaternion space [J].Acta Astronautica,2012,75(1):95-107.
  • 3TANG Xiaojun,LIU Zhenbao,ZHANG Jiasheng.Square?root quaternion cubature Kalman filtering forspacecraft attitude estimation [J].Acta Astronautica,2012,76(1):84-94.
  • 4乔相伟,周卫东,吉宇人.用四元数状态切换无迹卡尔曼曼滤滤波器估计的飞行器姿态[J].控制理论与应用,2012,29(1):97-103. 被引量:31
  • 5BELL B M,CATHEY F W.The iterated Kalman filterupdate as a Guass?Newton method [J].IEEE Trans onAutomatic Control,1993,38(2):294-297.
  • 6JULIER S J,UHLMANN J K,DURRANT?WHYTE HF.A new method for the nonlinear transformation ofmeans and covariances in filters and estimators [J].IEEE Transactions on Automatic Control,2000,45(3):477-482.
  • 7SIBLEY G,SUKHATME G,MATTHIES L.The iteratedsigma point Kalman filter with applications to long rangestereo [C] / / Proceedings of the Robotics:Science andSystems.Philadelphia:[s.n.],2006.
  • 8ZHAN Ronghui,WAN Jianwei.Iterated unscentedKalman filter for passive target tracking [J].IEEE Tranon Aerospace and Electronic Systems,2007,43(3):1155-1163.
  • 9程水英,毛云祥.迭代无味卡尔曼滤波器[J].数据采集与处理,2009,24(B10):43-48. 被引量:6
  • 10程水英,余莉.迭代无味卡尔曼滤波器的算法实现与应用评价[J].系统工程与电子技术,2011,33(11):2546-2553. 被引量:8

二级参考文献54

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:232
  • 2Kalman R E. A new approach to linear filtering and prediction problem [J]. Trans ASME Set D J Basic Eng, 1960, 82(3):34-45.
  • 3Simon D. Optimal state estimation: Kalman, H∞, and nonlinear approaches [M]. New Jersey: John Wiley &- Sons, 2006:121-330,130,400-412.
  • 4Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with applications to tracking and navigation: theory, algorithms, and software[M]. New York: John Wiley & Sons, 2001 : 200-217,99,123-129,373-374, 381-395,138-140,404-406.
  • 5Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proc IEEE, 2004, 92 (3) : 401-422.
  • 6Arasaratnam I, Haykin S, Elliott R J. Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature [J]. Proeeedings of the IEEE, 2007, 95 (5): 953-977.
  • 7Arulampalam S, Askell S, Gordom N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].IEEE Trans. on Signal Processing,2002,50(2) :174 - 188.
  • 8Fu X Y, Jia Y M. An Improvement on resampling algorithm of particle filters[J~. IEEE Trans. on Signal Processing, 2010, 58(10) :5414 - 5420.
  • 9Kabaoglu N. Target tracking using particle filters with support vector regression[J]. IEEE Trans. on Vehicular Technology, 2009,58(5) :2569- 2573.
  • 10Ito K, Xiong K. Gaussian filters for nonlinear filtering problems[J]. IEEE Trans. on Automatic Control, 2000,45(5) : 910 - 927.

共引文献83

同被引文献27

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部