期刊文献+

基于改进容积卡尔曼滤波的奇异避免姿态估计 被引量:12

Improved Cubature Kalman Filter Based Attitude Estimation Avoiding Singularity
原文传递
导出
摘要 利用矢量进行卫星姿态估计可以归结为非线性滤波问题。为了提高卫星姿态估计的精度,利用龙贝格-马尔塔(LM)迭代算法改进了容积卡尔曼滤波(CKF)。继而,提出改进容积卡尔曼滤波与四元数结合的容积四元数估计器(CQE),有效地避免了卫星大角度机动出现的奇异现象。进一步,给出了一种与影子修正罗德里格参数切换的容积修正罗德里格参数估计器(CME)。仿真对比表明,初始误差较大时容积修正罗德里格参数估计器具有更好的收敛速度和鲁棒性。 Spacecraft attitude estimation of from vector observations is a nonlinear problem in essence. The cubature Kalman filter (CKF) is combined with an iterative Levenberg-Marquardt (LM) algorithm in order to improve the accuracy of spacecraft attitude estimation, By fusing the improved CKF and quaternion, cubature quaternion estimator (CQE) never encounter singularity. Furthermore, cubature modified Rodrigues parameters estimator (CME) is derived by switching the modified Rodrigues parameters to the shadow modified Rodrigues parameters. Simulations demonstrate that the performance of the improved CME is more robust with faster convergence in conditions of large initial errors than the original CKF.
出处 《航空学报》 EI CAS CSCD 北大核心 2013年第3期610-619,共10页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61174037)~~
关键词 姿态估计 LM算法 四元数 修正罗德里格参数 卡尔曼滤波 容积卡尔曼滤波 attitude estimation LM algorithm quaternion modified Rodrigues parameters Kalman filter cubature Kalman filter
作者简介 魏喜庆 男,博士研究生。主要研究方向:非线性滤波和卫星相对导航。Tel:0451~86402204—8214Email:weixiqing@gmail.com 通讯作者Tel.:0451—86402204—8214E-mail:songshenmin@hit.edu.cn宋申民男,教授,博士生导师。主要研究方向:鲁棒控制,智能优化与智能控制,飞行器控制方面的研究。
  • 相关文献

参考文献2

二级参考文献29

  • 1Seo J, Yu M J, Park C G, et al. An extended robust H∞ filtering for nonlinear constrained uncertain systems. IEEE Transactions on Signal Processing 2006; 54(11): 4471-4475.
  • 2Souza C E, Barbosa K A, Neto A T. Robust H∞ filtering for discrete-time linear systems with uncertain time- varying parameters. IEEE Transactions on Signal Proc- essing 2006; 54(6): 2110-2118.
  • 3Gao H, Chen T. H∞ estimation for uncertain systems with limited communication capacity. IEEE Transac- tions on Automatic Control 2007; 52(11): 2070-2084.
  • 4Xiong K, Zhang H, Liu L. Adaptive robust extended Kalman filter for nonlinear stochastic systems. IET Control Theory & Applications 2008; 2(3): 239-250.
  • 5Calafiore G. Reliable location using set-valued nonlin- ear filters. IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans 2005; 35(2): 189-197.
  • 6Anavatti S G, Petersen I R, Kallapur A G. A dis- crete-time robust extended Kalman filter for uncertain systems with sum quadratic constraints. IEEE Transac- tions on Automatic Control 2009; 54(4): 850-854.
  • 7Wang Z, Daniel W C, Liu X. Robust filtering under randomly varying sensor delay with variance con- straints. IEEE Transactions on Circuits and Systems 2004; 51(6): 320-326.
  • 8Lu X, Xie L, Zhang H, et al. Robust Kalman filtering for discrete-time systems with measurement delay. IEEE Transactions on Circuits and Systems 2007; 54(6): 522-526.
  • 9Sayed A H. A framework for state-space estimation with uncertain models. IEEE Transactions on Auto- matic Control 2001; 46(7): 998-1013.
  • 10Subramanian A, Sayeb A H. Regularized robust filters for time-varying uncertain discrete-time systems. IEEE Transactions on Automatic Control 2004; 49(6): 970- 976.

共引文献6

同被引文献111

引证文献12

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部