期刊文献+

选举交互模型下的股市权益定价

Valuation of contingent claims by voter interacting systems
在线阅读 下载PDF
导出
摘要 运用停时理论及粒子选举交互作用系统,建立了一个包含两类投资者的股票价格模型,用以描述证券市场的单只证券价格过程波动的统计特性.基于统计分析方法,证明了标准化随机价格过程收敛于相应Black-Scholes模型的分布.讨论了该价格过程模型下的欧式未定权益的定价和套期保值问题. Applying stopping time theory and particle voter interacting systems,the paper models a financial stock price model that contains two types of investors for describing the fluctuations statistical properties of a single stock price process in the market.By the statistical analysis,we show that the probability distribution of the normalized random price process convenes to the corresponding distribution of the Black-Scholes model.Further,we discuss the valuation and hedging of European contingent claims for this price process model.
作者 邵吉光 王军
出处 《北京交通大学学报》 CAS CSCD 北大核心 2014年第3期135-140,共6页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(71271026) 中央高校基本科研业务费专项资金资助(S11JB00400)
关键词 选举交互系统 价格模型 未定权益 定价 套期保值 voter interacting systems price model contingent claims valuation hedging
作者简介 邵吉光(1974-),男,山东即墨人,讲师,博士.研究方向为金融统计.email:jgshao@bjtu.edu.cn.
  • 相关文献

参考文献10

  • 1邵吉光,王军.随机交互系统下证券波动的连锁反应[J].北京交通大学学报,2013,37(6):143-149. 被引量:1
  • 2方雯,王军.Ising动力系统模拟收益率的多重分形分析[J].北京交通大学学报,2011,35(3):162-166. 被引量:4
  • 3牛红丽,王军.基于选举模型理论研究股市特性[J].北京交通大学学报,2012,36(3):138-144. 被引量:4
  • 4Ji M F, Wang J. Data analysis and statistical properties of Shenzhen and Shanghai land indices[J]. WSEAS Transac- tions on Business and Economics, 2007, 4(2) : 33 - 39.
  • 5Lamberton D, Lapeyre B. Introduction to stochastic calcu- lus applied to finance[M]. London: Chapman and Hall, 2000 : 63 - 118.
  • 6Wang J, Deng S. Fluctuations of interface statistical physics models applied to a stock market model[J]. Non- linear Analysis: Real World Applications, 2008, 9 (2): 718 - 723.
  • 7Liggett T. Interacting particle systems[ M]. New York: Springer-Verlag, 1985 : 179 - 224.
  • 8Krawiecki A. Microscopic spin model for the stock market with attractor bubbling and heterogeneous agents [ J ]. In- ternational Journal of Modem Physics C, 2005, 16(4): 549 - 559.
  • 9Billingsley P. Convergence of probability measures [ M]. New York:John Wiley & Sons, 1968:207 - 235.
  • 10Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3) : 637 - 654.

二级参考文献37

  • 1邵明亭,王军.用选举模型模拟股票收益过程的宽尾现象[J].北京交通大学学报,2006,30(3):93-96. 被引量:1
  • 2Chen M F. From Markov chains to non-equilibrium particle systems[M]. USA NJ: World Scientific, River Edge, 1992 : 381 - 405.
  • 3Wang J. Estimates of correlations in two-dimensional Ising model[J]. Physica A, 2009, 388(5) : 565 - 573.
  • 4Wang J. Supercritical Ising model on the lattice fractal: Sierpinski carpet[J]. Modem Physics Letters B, 2006, 20(8):409- 414.
  • 5Bartolozzi M, Thomas A W. Stochastic cellular automata model for stock market dynamics[J ]. Physical Review E, 2004, 69(4) :046112.
  • 6Krawiecki A, Holyst J A, Helbing D. Volatility clustering and scaling for financial time series due to attractor bubbling[J ]. Physical Review Letters, 2002, 89 : 158701.
  • 7Gopikrishnan P, Plerou V, Liu Y, et al. Scaling and correlation in financial time series[J ]. Physica A, 2000, 287 : 362 - 373.
  • 8Richard S Ellis. Entropy, Large Deviations, and Statistical Mechanics[ M]. Beijing: World Publishing Corporation, 1992:135 - 161.
  • 9Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A, 2002, 316: 87- 114.
  • 10Mandelbrot B B. Fractal and scaling in finance: Discontinuity, concentration, risk[M]. New York: Springer Verlag, 1997:79- 104.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部