期刊文献+

一种面向社会网络的热点话题数据挖掘算法 被引量:7

A SOCIAL NETWORK-ORIENTED MINING ALGORITHM FOR HOT TOPIC DATA
在线阅读 下载PDF
导出
摘要 社会网络中的热点话题数据挖掘问题是目前的研究热点。针对现有方法应用到社会网络时挖掘结果不准确、不便于理解和时间复杂度高等不足,提出一种改进的挖掘算法。首先采用核密度估计法对话题进行分析,然后基于小世界理论和社会网络的链接特性对话题时间序列进行建模,最后提出基于学习的方法来对话题的走向和趋势进行预测,在不降低准确率的前提下,快速挖掘出下一时刻最有可能爆发的话题,达到准确预测话题传播趋势的目的。仿真实验结果表明,该方法是有效的,能够保证挖掘的整体效果,在挖掘准确率方面要优于已有的方法。 Mining the hot topic data in social network is the focus of research currently. Existing methods have the deficiencies when to be applied to the social networks such as inaccurate mining results, inconvenient in comprehension and high time complexity, etc. Aiming at these disadvantages, we propose an improved mining algorithm. First, the kernel density estimation method is used to analyse the topic; then the time sequence of the topic is modelled based on the small-world theory and the link characteristics of social network ; finally, the learning- based approach is presented to predict the direction and trends of the topic, and quickly mines the most possibly outbreak topics in the next time under the premise of not lowering the accuracy, achieves the goal of precisely predicting the propagation trend of the topic. Simulation experimental results show that our method is effective, it can ensure the overall effect of the mining, the accuracy of mining is better than the existing methods.
作者 肖志军
出处 《计算机应用与软件》 CSCD 北大核心 2014年第6期24-28,共5页 Computer Applications and Software
基金 广西教育厅科研项目(201204LX350) 广西自然科学基金项目(2013GXNSFAA019078) 广西高等教育教学改革工程项目(2013JGA213) 玉林师范学院校级重点项目(2011YJZD16)
关键词 社会网络 热点话题挖掘 链接特性 时间序列 学习 准确率 Social network Hot topic mining Link characteristics Time sequence Learning Accuracy
作者简介 肖志军,讲师,主研领域:数据挖掘理论,智能决策。
  • 相关文献

参考文献13

二级参考文献84

  • 1李晓虹,尚晋.一种改进的新Apriori算法[J].计算机科学,2007,34(4):196-198. 被引量:26
  • 2STEWART T A.Six degrees of mohamed atta .Business 2.0,2001(9):63 .http://www.business2.com/Articles/mag/print/0,1643,35253,FF.html.
  • 3RONFELDT D,ARQUILLA J.Networks and netwars:the future of terror,crime and militancy[M].Santa Monica:RAND,2001.
  • 4KREBS V E.Mapping networks of terrorist cells[J].Connections,2002,24(3):43-52.
  • 5LESSEER I O,HOFFMAN B,ARQUILLA J,et al,CHENG Kexiong(程克雄).Counterring the new terrorism(反新恐怖主义)[M]tran.Beijing:Xinhua Press,2002..
  • 6PENZAR D,SRBLJINOVI C ' A.About modelling of complex networks with applications to terrorist group modeling[J].Interdisciplinary Description of Complex System,2005,3(1):27-43.
  • 7FBI.Counterterrorism analytical lexicon.http://cryptome.org/fbi-ct-lexicon.pdf.
  • 8CARLEY K M.Estimating vulnerabilities in large covert networks // Proceedings of the 9th International Command and Control Research and Technology Symposium,2004.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.3786 &rep=rep1&type=pdf.
  • 9MCCULLOH I M,WEBB M,CARLEY K M,et al.Change detection in social networks .Arlington,VA:U.S.Army Research Institute Technical Report 1235 .http://www.hqda.army.mil/ari/pdf/TR_1235.pdf.
  • 10WASSERMAN S,FAUST K.Social network analysis:methods and applications[M].Cambridge:Cambridge University Press,1994.

共引文献217

同被引文献48

  • 1陈康,朱应坚,向勇.面向社交网络的用户数据挖掘技术研究[J].电信科学,2013,29(S1):94-101. 被引量:5
  • 2熊亚军,廖晓农,李梓铭,张小玲,孙兆彬,赵秀娟,赵普生,马小会,蒲维维.KNN数据挖掘算法在北京地区霾等级预报中的应用[J].气象,2015,41(1):98-104. 被引量:53
  • 3陈世强,蔡超.审计系统中基于数据挖掘的关联规则自动发现技术研究[J].计算机应用与软件,2007,24(1):172-174. 被引量:4
  • 4毛国君.数据挖掘原理与算法[M].北京:清华大学出版社,2007.
  • 5邵峰晶,于忠清,王金龙,等.数据挖掘原理与算法[M].2版.北京:科学出版社.2009:67.
  • 6Sun J,Chen W,Fang W,et al.Gene expression data analysis with the clustering method based on an improved quantum-behaved Particle Swarm Optimization[J].Engineering Applications of Artificial Intelligence,2012,25(2):376-391.
  • 7Chandra1 B,Manish Gupta1.A novel approach for distance-based semi-supervised clustering using functional link neural network[J].Soft Computing,2013,17(3):369-379.
  • 8Jarman I H,Etchekks T A,Bacciu D.Clustering of protein expression data:a benchmark of statistical and neural approaches[J].Soft Computing,2011,15(8):1459-1469.
  • 9Mansoorie E Ggach.A grid-based algorithm for hierarchical clustering of high-dimensional data[J].Soft Computing,2013,18(5):905-922.
  • 10贺玲,蔡益朝,杨征.高维数据聚类方法综述[J].计算机应用研究,2010,27(1):23-26. 被引量:43

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部