期刊文献+

高维数据聚类方法综述 被引量:43

Survey of clustering algorithms for high-dimensional data
在线阅读 下载PDF
导出
摘要 总结了高维数据聚类算法的研究现状,分析比较了算法性能的主要差异,并指出其今后的发展趋势,即在子空间聚类过程中融入其他传统聚类方法的思想,以提高聚类性能。 This paper provided a survey of current clustering algorithms for high-dimensional data at first, then made a comparison among them and identifized the new direction in the future, which was the combination of subspace clustering and other typical clustering methods.
出处 《计算机应用研究》 CSCD 北大核心 2010年第1期23-26,31,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(60802080)
关键词 高维数据 聚类 子空间 high-dimensional data clustering subspace
作者简介 贺玲(1976-),女,讲师,博士,主要研究方向为多媒体信息系统、数据挖掘(heling6159@163.com) 蔡益朝(1976-),讲师,博士,主要研究方向为仿真与智能决策 杨征(1978-),讲师,博士,主要研究方向为虚拟现实.
  • 相关文献

参考文献28

  • 1ERTOZ L, STEINBACH M, KUMAR V. Finding clusters of different sizes, shapes and densities in noisy high-dimensional data[ R]. Minnesota: Department of Computer Science, University of Minnesota, 2002.
  • 2HAM J H, LEE D D, SAUL L K. Learning high-dimensional correspondences from low dimensional manifolds [ C ]//Proc of ICML Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining. Washington: [ s. n. ] , 2003:34-41.
  • 3KOHONEN T. Self-organization and associated memory [ M]. [ S. l. ]: Springer-Verlag, 1988.
  • 4KOHONEN T. Self-organizing maps [ M ]. New York: Spinger-Verlag, 2001.
  • 5MINKA T P. Automatic choice of dimensionality for PCA[ C ]//Proc of International Conference on Advances in Neural Information Processing Systems. Cambridge: [ s. n. ] , 2001:598-604.
  • 6GRIFFITHS T L, KALISH M L. A muhidimensional scaling approach to mental multiplication[ J ]. Memory & Cognition, 2002,30 ( 1 ) : 97-106.
  • 7CAMASTRA F, VINCIARELLI A. Estimating the intrinsic dimension of data with a fractal-based method [J].IEEE Trans on Pattern Anal Mach Intell, 2002,24(10) :1404-1407.
  • 8CAMASTRA F. Data dimension estimation methods: a survey[ J]. Pattern Recognition, 2003, 36:2945-2954.
  • 9SCHOLKOPF B, SMOLA A, MULLER K. Nonlinear component analysis as a kernel eigenvalue problem [ J ]. Neural Computation, 1998,10(5) :1299-1319.
  • 10TENENBAUM J B, De SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction [ J ]. Science, 2000,290(5500) :2319-2323.

同被引文献439

引证文献43

二级引证文献206

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部