期刊文献+

基于K-means聚类算法的图像分割方法比较及改进 被引量:9

Comparison and Improvement of Image Segmentation Based on K-means
在线阅读 下载PDF
导出
摘要 为了探讨K-means算法应用于图像分割时在不同颜色空间中的聚类效果,选用了不同分辨率的多对图像进行研究,分析了基于RGB和YUV颜色空间的分割结果,并提出一种新的混合模型,即在YUV聚类距离公式中引入图像的二维信息熵的差量,同时利用YUV颜色空间中的Y分量作为其灰度进行计算,实验结果表明,基于YUV颜色空间聚类的改进模型分割效果比单纯使用YUV颜色空间进行聚类更佳。 In order to investigate the clustering effect of K-means in different color space when applied in image segmentation, a series of studies were carried out and pairs of images with different resolution were used to do the test. The effects of clustering in RGB & YUV color space were analyzed and a new combination model was proposed by introducing two dimensional information entropy differential into YUV clustering distance equation and utilizing Y component to make gray scale calculation. The result shows that new improved model achieved the better seg- mentation effect than only using clustering based on YUV color space.
出处 《太原理工大学学报》 CAS 北大核心 2014年第3期372-375,共4页 Journal of Taiyuan University of Technology
基金 山西省科技攻关项目(20130313030-1)
关键词 图像分割 RGB颜色空间 YUV颜色空间 K-均值聚类 二维信息熵 Image segmentation RGB color space YUV color space K-means value clustering Two dimensional information entropy
作者简介 作者简介:王爱莲(1975-),女,山西孝义人,讲师,博士,主要从事SNS数据分析,数据通信,无线传感器研发及无线数据分析的研究,(E—mail)jb636766@sina.com
  • 相关文献

参考文献9

  • 1Kanungo T,Mount D M, Netanyahu N S,et al. The Analysis of a Simple K-means clustering algorithm [J].Symposium on Computational Geometry, 2000(1) : 100-109.
  • 2Selvathi D, Arulmurgan A,Thamari S,et al. MRI image segmentation using unsupervised clustering techniques[C]// Com- putational Intelligence and Multimedia Applications,2005: 105-110.
  • 3Clausi D A. K-means iterative fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation[J]. Pattern Recognition, 2002,35(9) ~ 1959-1972.
  • 4Krista Rizman Zalik. Anefficient K-means clustering algorithm [J]. Pattern Recogition Letters,2008,29 (9): 1385-1391.
  • 5MacQueen J. Some methods for classification and analysis of multivariate observations[R]. Proceedings of the 5' th Berkeley Symposium on Mathematical Statistics and Probability, 1967(1) :281-297.
  • 6Wang Ailian,Duan Yuexing. The Application of simulated algorithm based on NET in NP[C]// The 2011 International Conference on Artificial Intelligence and Computational Intelligence (AICI'I 1 ), 2011, 237 : 60-68.
  • 7李彬,陈武凡.基于MS-FCM算法的MR图像分割方法[J].计算机工程,2010,36(16):198-199. 被引量:6
  • 8李光,王朝英,侯志强.基于K均值聚类与区域合并的彩色图像分割算法[J].计算机应用,2010,30(2):354-358. 被引量:35
  • 9Wang Ailian, Ma Jinfei, Qin Yueming. Teaching Demo system design and its technique realization based on Net [J] . Telkomnika,2013(11) : 237-241.

二级参考文献18

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:323
  • 2CHEN T-W, CHEN Y-L, CHIEN S-Y. Fast image segmentation based on K-means clustering with histograms in HSV color space [ C]//MMSP 2008: Image/Video Processing and Coding. [ S. l. ] : IEEE, 2008:322-325.
  • 3CHENG YIZONG. Mean shift, mode seeking, and clustering[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8) :790 -799.
  • 4ALAIN T, PHILIPPE C. Regions adjacency graph applied to color image segmentation[ J]. IEEE Transactions on Image Processing, 2000, 9(4) : 735 -744.
  • 5MARTIN D, FOWLKES C, MALIK J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics [ C ]// International Conference on Computer Vision, 2001. Washington, DC: IEEE Computer Society, 2001,2:416 - 423.
  • 6DENG Y, MANJUNATH B S. Unsupervised segmentation of colortexture regions in images and video[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,23(8):800- 810.
  • 7DORIN C, PETER M. Mean shift: A robust approach toward feature space analysis[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5) :603 -619.
  • 8SHI J, MALIK J. Normalized cuts and image segmentation[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8) : 888 - 905.
  • 9COUR T, BENEZIT F, SHI J. Spectral segmentation with multiscale graph decomposition[ C]// CVPR'05: Proceedings of Conference on Computer Vision and Pattern Recogniton. Washington, DC: IEEE Computer Society, 2005:1124 - 1131.
  • 10Singh M,Patel P,Khosla D,et al.Segmentation of Functional MRI by K-means Clustering[J].IEEE Transactions on Nuclear Science,1996,43(6):2030-2036.

共引文献39

同被引文献84

引证文献9

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部