期刊文献+

基于协同进化蜂群算法的覆盖优化策略 被引量:1

Coverage optimization strategy based on co-evolution bee colony algorithm
在线阅读 下载PDF
导出
摘要 对于具有移动节点的无线传感器网络,通过对移动节点位置的优化来提高监测区域网络覆盖率。传统蜂群算法存在过早成熟、后期收敛速度变慢的现象,为了克服这一缺点,将协同进化机制引入蜂群算法,增加解决方案多样性,加速收敛过程,提出一种基于协同进化人工蜂群的覆盖优化策略;针对节点在移动过程中的路径绕远现象,基于贪婪法,提出一种移动路径优化策略。仿真结果表明,协同进化人工蜂群覆盖优化策略覆盖优化效果明显优于微粒群和人工蜂群策略,移动路径优化策略可以有效减少节点移动距离。 To improve the monitoring of the regional network coverage, the locations of mobile nodes are optimized in wireless sensor networks with mobile nodes. Traditional bee colony algorithm exists the phenomenon of prematurely mature and late slow convergence. To overcome this shortcoming, the co-evolution mechanism is introduced colony algorithm to increase the diversity of solutions and accelerate the convergence process. A co-evolutionary artificial bee colony based coverage optimization strategy is proposed. What's more, for the nodes in the process of moving the path detour phenomenon, based on greedy method, a motion path optimization strategy is proposed. Simulation show that coverage optimization results by co-evolution bee colony algorithm is better than particle swarm optimization and artificial bee colony. Mobile path optimization strategies can effectively reduce the moving distance of nodes.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第4期1142-1146,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61300186) 江苏省科技支撑计划基金项目-社发(BE2012672) 江苏省青年基金项目(13KJB510001) 常熟市社发重点基金项目(CS201102) 苏州市科技发展基金项目(SZP201212)
关键词 协同进化 人工蜂群算法 覆盖优化 贪婪法 移动路径优化 co-evolution artificial bee colony algorithm coverage optimization greedy method mobile path optimization
作者简介 张骞(1990-),男,江苏徐州人,硕士,研究方向为无线传感器网络、进化计算; 通讯作者:李克清(1966-),男,湖北荆门人,博士,教授,CCF会员,研究方向为无线传感器网络、优化设计; 戴欢(1983-),男,江苏镇江人,博士,研究方向为无线传感器网络、模式识别; 刘帅(1989-),江西宜春人,硕士,研究方向为无线传感器网络。E-mail:likq03@126.com
  • 相关文献

参考文献11

二级参考文献69

共引文献170

同被引文献16

  • 1任彦,张思东,张宏科.无线传感器网络中覆盖控制理论与算法[J].软件学报,2006,17(3):422-433. 被引量:156
  • 2王雪,王晟,马俊杰.无线传感网络布局的虚拟力导向微粒群优化策略[J].电子学报,2007,35(11):2038-2042. 被引量:54
  • 3Howard A,Mataric M J,Sukhatme G S.An incremental self-deployment algorithm for mobile sensor networks[J].Autonomous Robots,2002,13(2):113-126.
  • 4Howard A,Mataric M J,Sukhatme G S.Mobile Sensor Network Deployment Using Potential Fields:A Distributed,Scalable Solution to the Area Coverage Problem[M].Tokyo:Springer Japan,2002:299-308.
  • 5LI S,XU C,PAN W,et al.Sensor deployment optimization for detecting maneuvering targets[C]//Proceedings of the 20058th International Conference on Information Fusion.Piscataway,NJ:IEEE,2005:1629-1635.
  • 6YU XjHUANG W,LAN J,et al.A novel virtual force approach for node deployment in wireless sensor network[C]//Proceedings of the 2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems.Piscataway,NJ:IEEE,2012:359-363.
  • 7LEE H J,KIM Y H,HAN Y H,et al.Centroid-based movement assisted sensor deployment schemes in wireless sensor networks[C]//Proceedings of the 2009 IEEE 70th Vehicular Technology Conference Fall.Piscataway,NJ;IEEE,2009:1-5.
  • 8HAN Y H,KIM Y H,KIM W,et al.An energy-efficient self-deployment with the centroid-directed virtual force in mobile sensor networks[J].Simulation,2011,88(10):1152-1165.
  • 9WANG Y C,WU F J,TSENG Y C.Mobility management algorithms and applications for mobile sensor networks[J].Wireless Communications and Mobile Computing,2012,12(1):7-21.
  • 10Mahboubi H,Moezzi K,Aghdam A G,et al.Distributed deployment algorithms for improved coverage in a network of wireless mobilesensors[J].IEEE Transactions on Industrial Informatics,2014,10(1):163-174.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部