期刊文献+

改进混合高斯模型的运动目标检测算法 被引量:40

Moving object detection algorithm of improved Gaussian mixture model
在线阅读 下载PDF
导出
摘要 针对传统的混合高斯模型存在无法完整检测运动目标、易将背景显露区检测为前景等问题,提出了一种基于混合高斯模型的运动目标检测的改进算法。通过将混合高斯模型与改进帧差法进行融合,快速区分出背景显露区和运动目标区,从而提取出完整的运动目标。在运动目标由静止缓慢转为运动的情况下,为背景显露区给予较大背景更新速率,消除了背景显露区对运动目标检测的影响。在兼顾混合高斯模型在复杂场景中对噪声处理效果差的基础上,利用背景模型替换的方法来提高算法的稳定性。经过反复实验,结果表明改进后的算法在自适应性、正确率、实时性、实用性等方面有了很大的改进,能够在各种复杂因素存在的情况下正确有效地对运动目标进行检测。 For the traditional Gaussian mixture model cannot detect complete moving object and is prone to detect the background as the foreground region, an improved algorithm was proposed for moving object detection based on Gauss mixture model. The Gaussian background model mixed with improved frame difference method for integration, distinguished the uncovered background area and moving object region, which could extract the complete moving object. To give a larger background updating rate of uncovered background area, the background exposure of regional influences was eliminated. In complex scene, it used the method of replacement by background model to improve the stability of the algorithm. The experiments prove that the improved algorithm has been greatly improved in the aspects of adaptability, accuracy, real-time, practicality and so on, and can correctly and effectively detect moving object in the situation with various complicated factors.
出处 《计算机应用》 CSCD 北大核心 2014年第2期580-584,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61172144)
关键词 混合高斯模型 运动目标检测 帧差法 背景显露区 背景更新速率 Gaussian mixture model moving object detection frame difference method uncovered background area background update rate
作者简介 华媛蕾(1990-),女,辽宁朝阳人,硕士研究生,主要研究方向:目标识别与跟踪; 通信作者刘万军(1959-),男,辽宁北镇人,教授,主要研究方向:目标识别与跟踪。电子邮箱Liuwanjun39@163.com
  • 相关文献

参考文献12

二级参考文献48

  • 1王典,程咏梅,杨涛,潘泉,赵春晖.基于混合高斯模型的运动阴影抑制算法[J].计算机应用,2006,26(5):1021-1023. 被引量:20
  • 2代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 3万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 4吕国亮,赵曙光,赵俊.基于三帧差分和连通性检验的图像运动目标检测新方法[J].液晶与显示,2007,22(1):87-93. 被引量:37
  • 5Stauffer C,Grimson W.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747-757.
  • 6Haritaoglu I,Harwood D,Davis L S.W4:Real-time surveillance of people and their activities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):809-830.
  • 7Leed S,Hull J,Erpl B.A Bayesian framework for Gaussian mixture background modeling[C]//Proceedings of IEEE Internatianal Conference on Image Processing,2003:973-976.
  • 8Hall D,Nascimento J,Ribeiro P,et al.Comparison of target detection algorithms using adaptive background models[C]//The 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance,2005,10(15):113-120.
  • 9Stauffer C,Grirason W.Adaptive background mixture models for real time tracking[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition,1999:246-252.
  • 10Hampapur A,Brown L,Connell J,et al.Smart video surveillance[J].IEEE Signal Processing Magazine,2005,22(2):38-51.

共引文献207

同被引文献309

引证文献40

二级引证文献180

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部