期刊文献+

基于高光谱的酿酒葡萄果皮花色苷含量多元回归分析 被引量:9

Multiple Regression Analysis of Anthocyanin Content of Winegrape Skins Using Hyper-spectral Image Technology
在线阅读 下载PDF
导出
摘要 以酿酒葡萄赤霞珠果实为研究对象,利用高光谱成像技术检测葡萄果皮中的花色苷含量。采集60组样本的900~1700nm近红外波段高光谱图像,并用pH示差法测量样本果皮中花色苷含量。选取高光谱图像中葡萄果实区域作为感兴趣区域(ROI),计算其平均光谱,并采用sG平滑、归一化、多元散射校正等预处理方法提高光谱的信噪比。然后采用偏最小二乘回归(PLSR)、支持向量回归(SVR)和BP神经网络算法建立花色苷含量预测模型。研究表明:基于PLSR模型推荐的13个隐含变量建立的BP神经网络模型的预测决定系数和预测均方根误差分别为0.9102和0.3795。 This work aimed to determine the anthocyanin content in skin based on hyperspectral imaging technology. The grapes of Cabernet Sauvignon ( Vitis vinifera L. ) produced in Shaanxi province were used as experimental materials. Hyperspectral images of 60 groups of grape samples were collected by near infrared hyperspectral camera (900 - 1 700 nm). After then, the anthocyanin content of skin was detected by pH-differential method. The grape berry regions of hyperspectral images were extracted as region of interest (ROI) in which its average spectrum was calculated. Moreover, different preprocessing methods were used to improve the signal noise ratio (SNR) including Savitzky- Golay smoothing, normalization and muhiplicative scatter correction, et al. Prediction model was established for determining anthocyanin content by the partial least squares regression (PLSR) , least squares support vector regression (SVR) and BP neural network (BPNN). It was shown that prediction coefficient of determination (P-R2 ) of BPNN model built by the thirteen latent variables recommended by PLSR model was 0. 910 2 and the root mean square error of prediction (RMSEP) was 0. 379 5.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2013年第12期180-186,139,共8页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(61003151) '十二五'国家科技支撑计划资助项目(2012BAD31B07) 中央高校基本科研业务费专项资金资助项目(QN2011099 QN2013062 QN2013055) 国家葡萄产业技术体系酿酒葡萄栽培岗位子项目(CARS-30-02A)
关键词 酿酒葡萄 花色苷 高光谱图像偏最小二乘回归 支持向量回归 BP神经网络 Winegrape Anthocyanin Hyperspeetral image Partial least squares regression Support vector regression BP neural network
作者简介 刘旭,讲师,博士,主要从事酿酒葡萄果实生理与质量控制研究,E-mail:liuxu@nwsuaf.edu.cn 通讯作者:宁纪锋,副教授,博士,主要从事计算机视觉、模式识别与农业信息化研究,E-mail:jf_ning@sina.com
  • 相关文献

参考文献25

  • 1Hardie W J, Obrien T P, Jaudzems V G. Morphology, anatomy and development of the pericarp after anthesis in grape, Vitis vinifera L. [J]. Australian Journal of Grape and Wine Research, 1996, 2(2) : 97 -142.
  • 2Downey M O, Dokoozlian N K, Krstic M P. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine : a review of recent research [ J]. American Journal of Enology and Viticulture, 2006, 57 (3) : 257 - 268.
  • 3Ribereau-Gayon P, Glories Y, Maujean A, et al. Handbook of enology: the chemistry of wine stabilization and treatments[ M ]. Chichester: Wiley, 2006 : 136 - 139.
  • 4Revilla E, Garcfa-Beneytez E, Cabello F. Anthocyanin fingerprint of clones of Tempranillo grapes and wines made with them[J]. Australian Journal of Grape and Wine Research, 2009, 15 (1): 70- 78.
  • 5Saint-Cricq de Gaulejac N, Vivas N, Glories Y. Maturation ph6nolique des raisins rouges relation avec la qualit- des vins comparaison des c6pages M erlot et Tempranillo[ J]. Progr-s Agricole et Viticole, 1998, 115 (2) : 306 - 318.
  • 6Liang Z C, Wu B H, Fan P G, et al. Anthocyanin composition and content in grape berry skin in Vitis germplasm[J]. Food Chemistry, 2008, 111(4): 837 -844.
  • 7Sun D. Hyperspectral imaging for food quality analysis and control[ M ]. Massachusetts: Academic Press, 2010.
  • 8罗阳,何建国,贺晓光,王松磊,刘贵珊.农产品无损检测中高光谱成像技术的应用研究[J].农机化研究,2013,35(6):1-7. 被引量:13
  • 9Monteiru S T, Minekawa Y, Kosugi Y, et al. Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery[ J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2007, 62( 1 ) : 2 - 12.
  • 10吴静珠,吴胜男,刘翠玲,陈兴海,高峰.近红外和高光谱技术用于小麦籽粒蛋白含量预测探索[J].传感器与微系统,2013,32(2):60-62. 被引量:19

二级参考文献214

共引文献512

同被引文献172

引证文献9

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部