期刊文献+

区间时间序列的混合预测模型 被引量:11

Hybrid model for interval-valued time series
原文传递
导出
摘要 提出一种基于自回归求和移动平均(ARIMA)与人工神经网络(ANN)的区间时间序列混合模型,并用混合模型分别对区间中值序列和区间半径序列建模.采用Monte Carlo方法生成模拟区间序列,分别用ARIMA、ANN和混合模型3种方法进行建模和预测实验,并用统计学方法检验模型误差.最后分别采用3种方法对H市轨道交通某号线牵引能耗区间序列进行了建模和预测,实验结果表明混合模型的建模精度和预测性能均优于单一模型. A hybrid model based on the autoregressive integrated moving average(ARIMA) model and the artificial neural network(ANN) model is proposed to model and predict interval-value time series. The interval-valued time series are converted to the mid-point and the half-range series, the forecasting of which is accomplished through a hybrid model, respectively. The evaluation of the ARIMA, ANN and hybrid models is based on the estimation of the average behavior of the mean squared error with synthetic and real interval-valued series in the framework of a Monte Carlo experiment. The experimental results show that the hybrid model is an effective way to improve the forecasting accuracy achieved by any one of the models separately.
出处 《控制与决策》 EI CSCD 北大核心 2013年第12期1915-1920,共6页 Control and Decision
关键词 区间分析 时间序列 混合模型 ARIMA模型 人工神经网络 城市轨道交通 MonteCarlo方法 interval analysis: time series: hybrid model: ARIMA model: artificial neural networks: urban rail transit Monte Carlo method
作者简介 岳继光(1961-),男,教授,博士生导师,从事过程控制、计算机控制等研究; 杨臻明(1982-),男,博士生,从事非线性系统、神经元网络的研究.
  • 相关文献

参考文献15

  • 1Moore R E. Interval arithmetic and automatic error analysis in digital computing[M]. Starford: Stanford University Press, 1962: 1-35.
  • 2Box G E P,Jenkins G M, Reinsel G C. Time series analysis: Forecasting and control[M]. 4th ed. New York:John Wiley & Sons, 2008: 21-224.
  • 3Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom Inflation[J]. Econometrica, 1982,50(4): 987-1007.
  • 4Roque A M, Mate C, ArroyoJ, et al. iMLP: Applying multi-layer perceptrons to interval-valued data[J]. Neural Processing Letters, 2007,25(2): 157-169.
  • 5曹玉苹,田学民.基于SVM和Kalman预测的非线性系统故障预报[J].控制与决策,2009,24(3):477-480. 被引量:8
  • 6ArroyoJ, Mate C. Introducing interval time series: Accuracy measures[C]. Proc in Computational Statistics. Heidelberg: Springer, 2006: 1139-1146.
  • 7Zemouri R, Gouriveau R, Zerhouni N. Defining and applying prediction performance metrics on a recurrent NARX time series model[J]. Neurocomputing, 2010, 73(13/14115): 2506-2521.
  • 8马千里,郑启伦,彭宏,钟谭卫,覃姜维.Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network[J].Chinese Physics B,2008,17(2):536-542. 被引量:7
  • 9李松,刘力军,解永乐.遗传算法优化BP神经网络的短时交通流混沌预测[J].控制与决策,2011,26(10):1581-1585. 被引量:156
  • 10Zhang G. Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing, 2003, 50(112/3): 159-175.

二级参考文献63

  • 1周志杰,胡昌华,周东华.基于非解析模型的动态系统故障预报技术[J].信息与控制,2006,35(5):608-613. 被引量:15
  • 2李松,贺国光.基于最大Lyapunov指数改进算法的交通流混沌判别[J].武汉理工大学学报(交通科学与工程版),2006,30(5):747-750. 被引量:18
  • 3张军峰,胡寿松.基于聚类和支持向量机的非线性时间序列故障预报[J].控制理论与应用,2007,24(1):64-68. 被引量:22
  • 4胡寿松,张正道.基于神经网络的非线性时间序列故障预报[J].自动化学报,2007,33(7):744-748. 被引量:16
  • 5Andrew K S Jardine, Darning Lin, Dragan Banjevic. A review on machinery diagnostics and prognostics implementing condition-based maintenance [ J ]. Mechanical Systems and Signal Processing, 2006, 20 (7), 1483-1510.
  • 6Ben C Juricek, Dale E $eborg, Wallace E Larimore.Predictive monitoring for abnormal situation management[J]. J of Process Control, 2001, 11(2) :111-128.
  • 7Xiong K, Zhang H Y, Chan C W. Performance evaluation of UKF-based nonlinear filtering [ J ]. Automatica, 2006, 42(2): 261-270.
  • 8Mohinder S Grewal, Aangus P Andrews. Kalman filtering: Theory and practice using Matlab[M]. New York: John Wiley & Sons, 2001.
  • 9Van Overschee Peter, De Moor Bart. An unifying theorem for three subspace system identification algorithms[J]. Automatica, 1995, 31(12): 1853-1864.
  • 10Ben C Juricek, Identification of with subspace Practice, 2001, Dale E Seborg, Wallace E Larimore. the tennessee eastman challenge process methods [J]. Control Engineering 9(12) : 1337-1351.

共引文献236

同被引文献102

引证文献11

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部