期刊文献+

SVM在冠心病分类预测中的应用研究 被引量:5

Study on Application of SVM in Prediction of Coronary Heart Disease
原文传递
导出
摘要 本文基于体检获得的血压、血脂、尿糖和尿酸等数据指标,应用支持向量机(SVM)对南方人群冠心病患者和非冠心病患者进行分类研究,为进一步的预防和治疗提供指导。首先选取径向基核函数、线性核函数和多项式核函数,构造了SVM分类器,再采用粒子群优化(PSO)算法SVM惩罚参数C和核参数σ,最后进行冠心病的诊断和预测。通过与反向传播模型的人工神经网络、线性判别分析法、Logistic回归分析及优化前的SVM进行比较,我们的计算结果显示优化后的RBF-SVM的总体分类效果要优于其他数据挖掘算法,其分类准确率、敏感性和特异性分别高达94.51%、92.31%及96.67%。研究表明SVM在心血管疾病的预测和辅助诊断中有很大的应用潜力。 Base on the data of blood pressure, plasma lipid, Glu and UA by physical test, Support Vector Machine (SVM) was applied to identify coronary heart disease (CHD) in patients and non-CHD individuals in south China population for guide of further prevention and treatment of the disease. Firstly, the SVM classifier was built using radial basis kernel function, liner kernel function and polynomial kernel function, respectively. Secondly, the SVM penalty factor C and kernel parameter ~ were optimized by particle swarm optimization (PSO) and then employed to diagnose and predict the CHD. By comparison with those from artificial neural network with the back propagation (BP) model, linear discriminant analysis, logistic regression method and non-optimized SVM, the overall results of our calculation demonstrated that the classification performance of optimized RBF-SVM model could be superior to other classifier algorithm with higher accuracy rate, sensitivity and specificity, which were 94.51%, 92.31% and 96.67%respectively. So, it is well concluded that SVM could be used as a valid method for assisting diagnosis of CHD.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2013年第6期1180-1185,共6页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(10972081 11072080) 广东省自然科学基金资助项目(S2011010005451)
关键词 支持向量机 冠心病 分类预测 粒子群优化 Support vector machine (SVM) Coronary heart disease (CHD) Prediction Particle swarm optimization (PSO)
作者简介 通讯作者。Email:yfang@scut.edu.cn
  • 相关文献

参考文献12

二级参考文献193

共引文献1577

同被引文献86

  • 1张文彤,竺丽明,王见义,鲍培芬.基于BP神经网络的中医医院住院费用影响因素分析[J].中华医院管理杂志,2005,21(3):161-165. 被引量:37
  • 2Son Y J, Kim HG, Kim EH,et al.Application of support vector machine for prediction of medication adherence in heart failurepatients. Healthc Inform Res. 2010; 16(4):253-259.
  • 3Verplancke T, Van Looy S,Benoit D,et al.Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with haematological malignancies.BMC Med Inform Decis Mak.2008;8:56.
  • 4Dassen W, Gorgels A,Berendsen A,et al.Guideline assessment and implementation in congestive heart failure. Comput Cardiol.2003;331-334.
  • 5Yu W, Liu T, Valdez R,et al.Application of support vector machine modeling for prediction of common diseases: the case of diabete~ and prediabetes. BMC Med Inform Decis Mak.2010;10:16.
  • 6Yu SN,Lee MY.Conditional mutual information-based feature selection for congestive heart failure recognition using heart rate variability. Comput Methods Programs Biomed.2012; 108(1 ):299-309.
  • 7Thurston RC,Matthews KA, Hernandez J,et al.lmproving the performance of physiologic hot flash measures with support vector machines.Psychophysiology. 2009;46:285-292.
  • 8Toh CT, Jackson B,Gascard DJ,et aI.Barriers to medication adherence in chronic heart failure patients during home visits.J Pharm Pract Res.2010;40:27-30.
  • 9Riegel B,Moser DK,Anker SD,et al.State of the science: promoting self-care in persons with heart failure: a scientific statement from the American Heart Association. Circulation. 2009;120(12):1141-1163.
  • 10Rud S,Yang JS.A support vector machine (SVM) classification .~pproach to heart murmur detection.Lect Notes Comp Sci. 2_010;6004: 52-59.

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部