期刊文献+

基于改进蚁群算法的移动机器人路径规划 被引量:24

Improved Ant Colony Algorithm-Based Path Planning for Mobile Robot
在线阅读 下载PDF
导出
摘要 针对蚁群算法中收敛速度和局部最优的矛盾,提出一种适用于静态环境的基于改进蚁群算法的移动机器人路径规划方法.在环境建模方面,利用机器人起点和终点的位置建立环境的可视图.改进的蚁群算法将环境中局部的路径信息加入到信息素的初始化和路径选择概率中,提高了算法收敛速度的同时尽可能地避免算法早熟.当算法陷入停滞时,引入交叉操作并调整α,β和ρ的值,增加了算法的逃逸能力.仿真结果证明了所提方法提高了最优路径的搜索效率,整体性能优于标准蚁群算法. To solve the contradictory between the convergence speed and the local optimum in ant colony algorithm, an improved ant colony optimization algorithm (IACO) was proposed for path planning of mobile robot in the static environment. The locations of start and goal were utilized to build the environmental model based on the simplified visibility graph. In IACO, the local path information was integrated with the initialization of pheromone and the selected probabilities of the paths, resulting in improving the convergence speed and avoiding the premature phenomenon as far as possible. For overcoming the possible stagnation phenomenon, crossover operation is drawn into the proposed algorithm and the value of α、βand ρ were updated, which enhanced the capability of escaping stagnation phenomenon. The simulation results demonstrated that the search efficiency of optimum path and the overall performance of the proposed algorithm were improved to be better than that of standard ACO.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第11期1521-1524,共4页 Journal of Northeastern University(Natural Science)
基金 山东省自然科学基金资助项目(ZR2011FM005)
关键词 移动机器人 环境建模 简化可视图 蚁群算法 路径规划 mobile robot environment modeling visibility graph ant colony optimization(ACO) path planning
作者简介 张琦(1982-),男,辽宁沈阳人,哈尔滨工业大学博士研究生 马家辰(1964-),男,黑龙江佳木斯人,哈尔滨工业大学教授,博士生导师.
  • 相关文献

参考文献11

  • 1Deepak B L, Parhi D R, Kundu S. Innate immune based path planner of an autonomous mobile robot [ J ]. Procedia Engineering,2012,38 : 2663 - 2671.
  • 2Abiyev R, Ibrahim D, Erin B. Navigation of mobile robots in the presence of obstacles [ J ]. Advances in Engineering Software,2010,41 (10) :1179 - 1186.
  • 3Likhachev M, Ferguson D, Gordon G, et al. Anytime search in dynamic graphs [ J ] Artificial Intelligence, 2008, 172 (14) :1613 - 1643.
  • 4Ogren P,Leonard N E. A convergent dynamic window approach to obstacle avoidance [ J ]. IEEE Transactions on Robotics,2005,21 (2) : 188 - 195.
  • 5Pradhan D. Fuzzy logic techniques for navigation of several mobile robots [ J ]. Applied Soft Computing, 2009,9 ( 1 ) : 290 - 304.
  • 6Atyabi A,Phon-Amnuaisuk S,Ho C K. Navigating a robotic swarm in an uncharted 2D landscape [ J ] . Applied Soft Computing ,2010,10( 1 ) :149 - 169.
  • 7Garcia M A P, Montiel O, Castillo O, et al. Path planning for atttonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation [ J ] Applied Soft Computing,2009,9 (3) : 1102 - 1110.
  • 8朱庆保.复杂环境下的机器人路径规划蚂蚁算法[J].自动化学报,2006,32(4):586-593. 被引量:46
  • 9赵娟平,高宪文,刘金刚,符秀辉.移动机器人路径规划的参数模糊自适应窗口蚁群优化算法[J].控制与决策,2011,26(7):1096-1100. 被引量:18
  • 10Wang Z Q, Zhu X G, Han Q Y. Mobile robot path planning based on parameter optimization ant colony algorithm[ J ]. Procedia Engineering ,2011,15:2738 - 2741.

二级参考文献25

  • 1庄健,王孙安.基于人工免疫网络机器人路径规划算法的进一步研究[J].系统仿真学报,2004,16(5):1017-1019. 被引量:12
  • 2段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:215
  • 3张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望[J].系统仿真学报,2005,17(2):439-443. 被引量:120
  • 4Dong Yongfeng, Gu Junhua. Combination of GA and ant colony algorithm for distribution network planning[C]. Proc of the 6th Int Conf on Machine Learning and Cybernetics. New York: IEEE, 2007: 999-1002.
  • 5SOULIGNAC M.Feasible and optimal path planningin strong current fields[J].IEEE Transactions onRobotics,2011,27(1):89-98.
  • 6SILVA M O,SILVA W C,ROMERO R A F.Per-formance analysis of path planning techniques basedon potential fields[C]//Proceedings of the 7th LatinAmerican Robotics Symposium and Intelligent Robot-ics Meeting.Piscataway:IEEE Inc.Press,2010:115-119.
  • 7ZENG C,ZHANG Q,WEI X P.Robotic globalpath-planning based modified genetic algorithm andA*algorithm[C]//Proceedings of the 3rd Interna-tional Conference on Measuring Technology andMechatronics Automation.Piscataway:IEEE Inc.Press,2011:167-170.
  • 8QIN Y Q,SUN D B,LI N,et al.Path planning formobile robot using the particle swarm optimizationwith mutation operator[C]//Proceedings of 2004In-ternational Conference on Machine Learning and Cy-bernetics.Piscataway:IEEE Inc.Press,2004:2473-2478.
  • 9DORIGO M,MANIEZZO V,COLORNI A.Antsystem:optimization by a colony of cooperating a-gents[J].IEEE Transactions on Systems,Man andCybernetics,1996,26(1):29-41.
  • 10Yi X,He Y,Guan X.Cooperative location model under the nearest neighbor criterion position location and navigation.In:Proceedings of Symposium,PLANS 2004,IEEE,2004.658~661

共引文献116

同被引文献173

引证文献24

二级引证文献196

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部