期刊文献+

基于分块EnKF的非线性目标跟踪算法 被引量:1

Nonlinear Target Tracking Algorithm Based on Block Ensemble Kalman Filter
在线阅读 下载PDF
导出
摘要 针对滤波航迹的相关性以及初始状态的选择会对跟踪性能产生影响的问题,将集合卡尔曼滤波算法引入到非线性目标跟踪领域,验证了其可行性和有效性,提出了基于分块集合卡尔曼滤波的非线性目标跟踪算法.采用分块思想生成初始集合,使用协方差矩阵加权方法解决分块间的航迹相关问题.仿真结果表明基于分块集合卡尔曼滤波的目标跟踪算法计算复杂度和以往的集合卡尔曼滤波算法同阶的情况下可以提供更高的运动参数估计精度,解决了粒子滤波算法计算量大难以进行实时跟踪的问题. As target tracking performance depends on correlated tracks and the selection of filter initial states,ensemble Kalman filter was introduced to nonlinear target tracking system,and the feasibility and validity of the system were verified.A new target tracking algorithm based on block ensemble Kalman filter was proposed,where initial ensemble was produced by the block method,and covariance matrix weighting was used for all the blocks in the target tracking process.The simulation results show that the algorithm based on block ensemble Kalman filter has the same computational complexity as previous ensemble Kalman filter while offers higher estimation accuracy for motion parameters,and can fulfill real-time tracking in contrast to high computational complexity of particle filter.
出处 《西南交通大学学报》 EI CSCD 北大核心 2013年第5期863-869,共7页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(60971104) 中央高校基本科研业务费专项资金资助项目(SWJTU11BR179)
关键词 集合卡尔曼滤波 非线性滤波 目标跟踪 分块 ensemble Kalman filter nonlinear filtering target tracking block
作者简介 崔波(1979-),女,讲师,博士,研究方向为目标跟踪和数据融合,E-mail:bcui@swjtu.edu.cn
  • 相关文献

参考文献15

  • 1GORDON N, SALMOND D. Novel approach to non- linear and non-Gaussian Bayesian state estimation[ J]. Proc of institute electric engineering, 1993, 140 (2) : 107-113.
  • 2WANG Xuezhi, DARKO M, SICKI R E, et al. Efficient and enhanced multi-target tracking with Doppler measurements [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45 ( 4 ) : 1400-1417.
  • 3FOO P H. Combining the interacting multiple model method with particle filters for maneuvering target tracking with a multistatic radar system[ J]. IET Radar, Sonar and Navigation, 2011, 5(7): 697-706.
  • 4EVENSEN G. Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics I J]. Journal of Geophysical Research, 1994, 99(C5) : 10143-10162.
  • 5EVENSEN G. The ensemble Kalman filter: theoretical formulation and practical implementation[ J ]. Ocean Dynamics, 2003, 53(4): 343-367.
  • 6JOHN D B, WADE T C, ZHAN Xiwu, et al. Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural droughtmonitoring[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(1) : 57-66.
  • 7MITCHELL H L, HOUTEKAMER P L, PELLERIN G. Ensemble size, balance, and model-error representation in an ensemble Kalman filter[J]. Monthly Weather Review, 2002, 130(11): 2791-2808.
  • 8SNYDER C, ZHANG F. Assimilation of simulated Doppler radar observations with an ensemble kalman filter[J]. Monthly Weather Review, 2003, 131 (8) : 1663-1677.
  • 9DOWELL D C, Zhang Fuqing, WICKER L J. Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell : Ensemble Kalman filter experiments[J]. Monthly Weather Review, 2004, 132(8) : 1982-2005.
  • 10CUI Bo, ZHANG Jiashu . The improved ensemble Kalman filter for multi-sensor target tracking[C]/// 2008 International Symposium on Information Science and Engineering. Washington D C: IEEE Computer Society, 2008: 263-265.

二级参考文献44

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:234
  • 2Ito K, Xiong K. Gaussian filters for nonlinear filtering problems[J]. IEEE Trans . on Automatic Control ,2000,45(5) :910 - 927.
  • 3Chen Z. Bayesian filtering: from Kalman filters to particle fil ters, and beyond]R]. Hamilton: McMaster University,2003.
  • 4Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking[J]. IEEE Trans. on Signal Processing, 2002,50(2) : 174 - 188.
  • 5Handschin J E, Mayne D Q. Monte Carlo techniques to estiate the conditional expectation in multi-stage non linear filtering[J]. International Journal Control,1968,9(5):547-559.
  • 6Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo methods for Bayesian filtering [J]. Statistics and Computing, 2000,10(3) :197 - 208.
  • 7Merwe R V, Doucet A. The unscented particle filter[EB/OL]. [2006 - 01 - 18]. http://cslu. cse. ogi. edu/publications/ps/ UPF_CSLU_talk.
  • 8Evensen G. Sequential data assimilation with a nonlinear quasi geostrophie model using Monte Carlo methods to forecast error statistics[J]. Geophys,1994,99(C5):10. 143-10.162.
  • 9Mandel J, Beezley J D. An ensemble Kalman particle predictor corrector filter for non-gaussian data assimilation [C]//Proc. of the 9th International Conference on Computational Science, 2009:470 - 478.
  • 10Delft G V, Serafy G Y, Heemink A W. The ensemble particle fil- ter (EnPF) in rainfall-runoff models[J]. Stochastic Environmental Research and Risk Assessment, 2009,23 ( 8 ) :1203 - 1211.

共引文献17

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部