期刊文献+

基于集合卡尔曼滤波的非线性目标跟踪算法 被引量:5

Nonlinear Target Tracking Algorithm Based on Ensemble Kalman Filter
在线阅读 下载PDF
导出
摘要 针对目标跟踪系统的非线性问题,将集合预报思想和卡尔曼滤波技术相结合,提出了基于集合卡尔曼滤波的非线性目标跟踪算法,讨论了初始集合的不同选择对跟踪性能带来的影响,实现了与其它常用非线性跟踪算法间的比较。利用到达角和多普勒频率测量数据实现非线性系统中目标跟踪,验证了算法的有效性和可行性。仿真结果表明集合卡尔曼滤波技术能够应用到非线性目标跟踪系统中,并且计算复杂度较低,具有很好的跟踪性能。 For the problem of nonlinearity in target tracking system, a nonlinear target tracking algorithm based on ensemble Kalman filter (EnKF) was proposed, which combines the advantages of ensemble forecasted thought and Kalman filter, and the affection of different initial ensembles on target tracking performance was discussed, then com- parison with other nonlinear tracking algorithms was executed. The algorithm used the measurements of direction - of - arrival and Doppler frequency" to estimate the target state, and the feasibility and validity of algorithm were veri- fied. The simulation shows that' the proposed algorithm can be applied to nonlinear .taiget tracking system and offer much advantages in terms of estimation performance with lower computation.
出处 《计算机仿真》 CSCD 北大核心 2013年第4期317-321,共5页 Computer Simulation
基金 国家自然科学基金(60971104) 西南交通大学百人计划项目(SWJTU11BR179)
关键词 集合卡尔曼滤波 目标跟踪 非线性 跟踪性能 Ensemble kalman filter(EnKF) Target tracking Nonlinear Tracking performance
作者简介 崔波(1979-),女(汉族),四川省成都市人,讲师,在读博士,主要研究领域为数据融合、目标跟踪。 张家树(1965-),男(汉族),四川省成都市人,教授,博士研究生导师,主要研究领域为信号与信息处理。 杨宇(1978-),男(汉族),贵州省息烽县人,工程师,硕士,主要f研究领域为密码学。
  • 相关文献

参考文献7

  • 1UHLMANN J. Algorithm for multiple target tracking [ J ]. Ameri- can Science,1992,80(2) : 128 -141.
  • 2JULIER S, UHLMANN J. A new method for the nonlinear transfor- mation of means and covariances in filters and estimators [ J ]. IEEE Transactions on Automatic Control,2000,45 (3) :477 -482.
  • 3GORDON N J, SALMOND D J,. SALMOND A F M. Novel ap-proach to non - linear and non - Ganssian bayesian state estimation [ C ]. Proc of Institute Eleetirc Engineering, 1993,140 (2) : 107 - 113.
  • 4EVENSEN G. Sequential data assimilation with a nonlinear quasi -geostrophic model using Monte Carlo methods to forecast error statistics[ J]. Journal of Geophysical Research, 1994, 99 ( C5 ) : 10143 - 10162.
  • 5DAUM F E, HUANG J. The curse of dimensionality for particle filters[ C]. Proc. IEEE Conf. Aero, 2003, 4 : 1979 - 1993.
  • 6KOTECHA J H, DJURIC P M. Gaussian particle filtering[ J]. IEEE Trans. Sig. Proc. 2003, 51:2592-2601.
  • 7张学峰,黄大吉,章本照,童元正.集合数据同化方法的发展与应用概述[J].海洋学研究,2007,25(1):88-94. 被引量:9

二级参考文献27

  • 1EVENSEN G,van LEEUWEN P J.An Ensemble Kalman Smoother for nonlinear dynamics[J].Mon Weather Rev,2000,128:1 852-1 867.
  • 2van LEEUWEN P J.An Ensemble Smoother with error estimates[J].Mon Weather Rev,2001,129:709-728.
  • 3BISHOP C H,ETHERTON B J,MAJUMDAR S J.Adaptive sampling with the ensemble transform Kalman filter.Part 1:Theoretical aspects[J].Mon Weather Rev,2001,129:420-436.
  • 4ANDERSON J L,ANDERSON S L.An ensemble adjustment filter for data assimilation[J].Mon Weather Rev,2001,129:2 884-2 903.
  • 5WHITAKER J S,HAMILL T M.Ensemble data assimilation without perturbed observations[J].Mon Weather Rev,2002,130:1 913-1 924.
  • 6PHAM D T,VERRON J,ROUBAUD M C.A singular evolutive extended Kalman filter for data assimilation in oceanography[J].J Marine Sys,1998,16:323-340.
  • 7BRASSEUR P,BALLABRERA J,VERRON J.Assimilation of altimetric data in the mid-latitude oceans using the SEEK filter with an eddy-resolving primitive equation model[J].J Marine Sys,1999,22:269-294.
  • 8BRUSDAL K,BRANKART J,HALBERSTADT G,et al.A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems[J].J Marine Sys,2003,40-41:253-289.
  • 9VERLAAN M,HEEMINK A W.Nonlinearity in Data Assimilation Applications:A Practical Method for Analysis[J].Mon Weather Rev,2001,129:1 578-1 589.
  • 10PARK J H,KANEKO A.Assimilation of coastal acoustic tomography data into a barotropic ocean mode[J].Geophysical Research Letters,2000,27:3 373-3 376.

共引文献8

同被引文献42

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:295
  • 2李路,宿勇,周德超,刘忠.基于时空相关性检测的视频序列动目标检测方法[J].探测与控制学报,2005,27(3):52-54. 被引量:6
  • 3刘国祥,丁晓利.沿海地区DInSAR形变探测:精度与可应用性分析[J].测绘通报,2006(9):9-13. 被引量:12
  • 4董政.日盲紫外探测系统自动目标识别的研究[D] .成都:电子科技大学,2011.
  • 5YU Shi,TRANCHEVENT L C,LIU Xinhai,et al.Optimized data fusion for kernel k means clustering[J] .IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(5):1031-1039.
  • 6WANG Wei,YANG Jiong,MUNTZ R R.Sting:A statistical information grid approach to spatial data mining[C] // The 23rd VLDB Conference.Athens,Greece,1997.
  • 7VATTURI P,WONG W K.Category detection using hierarchical mean Shift[J/OL] .http://algo-rithmofsaintqdd.googlecode.corm/svn/trunk/PDF/1.pdf.2009.
  • 8BILIK I,TABRIKIAN J.Maneuvering target tracking in the presence of glint using the nonlinear gaussian mixture kalman filter[J] .IEEE Transactions on Aerospace and Electronic Systems,2010,46 (1):246-262.
  • 9DU Kai,JU Yongfeng.MeanShift tracking algorithm with adaptive block color histogram[C] //2nd International Conference on Consumer Electronics,Communications and Networks (CECNet).2012:2692-2695.
  • 10NING J,ZHANG L,ZHANG D,et al.Robust mean shift tracking with corrected background weighted histogram[J] .IET Computer Vision,2012,6 (1):62-69.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部