期刊文献+

一类伪抛物方程解爆破时间的上下界估计

The Upper and Lower Bounds on the Blow-up Time for a Pseudo-Parabolic Equation
在线阅读 下载PDF
导出
摘要 考虑某一类伪抛物方程的初边值问题,通过使用能量不等式方法,得到了该方程的解在有限时间爆破的充分条件,同时也得到了解爆破时间的上下界估计. This paper considers an initial-boundary value problem for a pseudo-parabolic equation. By using the method of energy inequality, we derive sufficient conditions for the blow-up solutions of the pseudo-parabolic equation and the upper and lower bounds on the blow-up time for the pseudo parabolic equation.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第9期93-97,共5页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(11001189 11071266)
关键词 伪抛物方程 能量不等式方法 爆破时间 pseudo-parabolic equation the method of energy inequality blow up time
作者简介 张庆娜(1987-),女,河南濮阳人,硕士研究生,主要从事偏微分方程理论的研究.
  • 相关文献

参考文献11

  • 1BENJAMIN T B, BONA J L, MAHONY J J. Model Equation for Long Waves in Nonlinear Dispersion System[J]. Phil Trans R Soc London, 1972, 272(1210): 47-78.
  • 2LANDAU L D, LIFSHITS E M. Electrodynamics of Continuous Media [M]. Mascow: Nauka, 1992.
  • 3LEVINE H A. Some Nonexistence and Instability Theorems for Solutions of Formally Parabolic Equation of the Form Put -Au-I-F(u) [J]. Arch Ration Mech Anal, 1973, 51(5): 371-386.
  • 4SVESHNIKOV A G, ALSHIN A B, KORPUSOV M O, et al. Linear and Nonlinear Equations of Sobolev Type[M]. Moscow: Fizmatlit, 2007.
  • 5Zhu Chao sheng. Global Attractor for The Damped Benjamin-Bona Mahony Equations on R1 [J]. Applicable Analysis, 2007, 86(1): 59-65.
  • 6Zhu Chao-sheng, Mu Chun-lai. Exponential Decay Estimates for Time Delayed Benjamin Bona Mahony Equations[J]. Applicable Analysis, 2008, 87(4): 401-407.
  • 7罗祠军.具有一般边值条件的广义BBM-Burgers方程解的大时间性态[J].西南大学学报(自然科学版),2011,33(5):34-38. 被引量:2
  • 8KORPUSOV M O, SVESHNIKOV A G. On Blow-Up of a Solution to a Sobolev-Type Equation with a Nonlocal Source [J]. Siherian Mathematical Journal, 2005, 46(3): 443-452.
  • 9KORPUSOV M O, SVESHNIKOV A G. BlowUp of a Solutions of Nonlinear SobolewType Equation with Cubic Source[J]. Differ Equ, 2006, 42(3): 431-443.
  • 10KORPUSOV M O, SVESHNIKOV A G. Blow-Up of Solutions of Strongly Nonlinear Equations of Pseudoparabolic Type [J]. J MathSci, 2008, 148(1):89-90.

二级参考文献9

  • 1BENJAMIN T B, BONA J I., MAHONY J J. Model Equations for Long Waves in Nonlinear Dispersive System[J]. Phil Trans R Soc London, 1972, 272(1210): 47- 78.
  • 2MEI M. Large-Time Behavior of Solution for Generalized Benjamin-Bona-Mahony-Burgers Equations [J]. Nonlinear Analysis, 1998, 33(3): 699-714.
  • 3YIN H, ZHAO H J, KIM J S. Convergence Rates of Solutions Toward Boundary Layer Solutions for Generalized Benja minBona-MahonyBurgers Equations in the Half Space [J].J Diff Equ, 2008, 245(11): 3144-3216.
  • 4HASHIMOTO I, MATSUMURA A. Large Time Behavior of Solutions to an Initial Boundary Value Problem on the Half Line for Scalar Viscous Conservation Law [J]. Methods Appl Anal, 2007, 14(1): 45-60.
  • 5TAIPIN LIU, MATSUMURA A, Nishihara K. Behaviors of Solutions for the Burgers Equation with Boundary Corre- sponding to Rarefaction Waves [J]. SIAM J Math Anal, 1998, 29(2): 293-308.
  • 6TAIPIN LIU, NISHIHARA K. Asymptotic Behavior for Scalar Viscous Conservation Laws with Boundary Effect [J].J Differential Equations, 1997, 133(2): 296-320.
  • 7MATSUMURA A, NISHIHARA K. Asymptotic Toward the Rarefaction Wave of Solutions of a One-Dimensional Model System for Compressible Viscous Gas [J]. JapanJ Appl Math, 1986, 3(1): 1-13.
  • 8MATSUMURA A, NISHIHARA K. Asymptotic Stability of Traveling Waves for Scalar Viscous Conservation Laws with Non-Convex Nonlinearity[J].Commun Math Phys, 1994, 165(1): 83-96.
  • 9蒋咪娜,徐艳玲.广义BBM-Burgers方程初边值问题解的渐近行为[J].华中师范大学学报(自然科学版),2004,38(1):5-9. 被引量:4

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部