期刊文献+

各向异性扩散图像去噪的改进模型 被引量:4

Improved model of anisotropic diffusion image denoising
在线阅读 下载PDF
导出
摘要 图像去噪过程中,为了在有效平滑噪声的同时较好地保护图像的边缘和细节,在Cattle平滑模型基础上,对扩散系数作出改进,提出了更有效的自适应去噪模型。该模型不仅针对不同的梯度大小采用了不同的扩散系数,而且将边缘锐化因子二阶偏导引入到扩散系数中。而在图像质量评判标准中,提出了基于相关系数函数的最佳停止时间评判准则。实验结果表明,改进的模型优于C模型,且能更好地吻合评判准则。 In the process of image denoising,in order to remove noise effectively and preserve edges and key details,the diffusion coefficient based on the Cattle model is improved and a more effective adaptive denoising model is proposed.The model can not only adopt different diffusion coefficient according to different sizes of the gradient but also lead the edge sharping factor of second order partial deviation into the diffusion coefficient.The best stop time evaluation criteria based on correlation coefficient is proposed in the mean time.The experimental results show that the improved model is superior to C model,and can better coincide with the judge standard.
出处 《计算机工程与应用》 CSCD 2013年第18期130-133,共4页 Computer Engineering and Applications
基金 重庆市自然科学基金资助项目(CSPC 2005BB2197) 重庆大学"211工程"三期创新人才培养计划建设基金资助项目(No.S-09110)
关键词 图像去噪 各向异性扩散 扩散系数 相关系数 image denoising anisotropic diffusion diffusion coefficient correlation coefficient
作者简介 郑满满(1988-),女,硕士研究生,研究领域为智能计算; 胡小兵(1975-),男,博士,副教授,研究领域为现代化技术、机器人控制技术和计算机软件设计; 郑申海(1988-),男,硕士研究生,研究领域为智能汁算。E-mail:20110602030@cquedu.cn
  • 相关文献

参考文献14

  • 1Perona P,Malik J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Transactions on Pattern Recognition and Machine Intelligence,1990,12(7):629-639.
  • 2Witkin A.Scale-space filtering[C]//8th International Joint Conference on Artifical Intelligence,Karlsruhe,West Germany,1983:1019-1022.
  • 3冯向初,王卫卫.图像处理的变分和偏微分方程方法[M].北京:科学出版社,2009.
  • 4Cattle F,Lions P L,More J M.Image selective smoothing and edge detection by nonlinear diffusion[J].SIAM Journal of Numerical Analysis,1992,29(1):182-193.
  • 5Alvarez L,lions P L,Morel J M.Image selective smoothing and edge detection by nonlinear diffusion[J].SIAM Journal of Numerical Analysis,1992,29(3):845-866.
  • 6Chen Yunmei.Image denoising and segmentation via nonlinear diffusion[J].Computers and Mathematics with Applications,2000,39:131-149.
  • 7王毅,张良培,李平湘.各向异性扩散平滑滤波的改进算法[J].中国图象图形学报,2006,11(2):210-216. 被引量:28
  • 8朱立新,罗子娟.法曲率驱动曲面演化图像去噪模型研究[J].计算机工程与应用,2011,47(15):191-193. 被引量:2
  • 9冈萨雷斯.数字图像处理[M].阮秋琦,阮宇智,译.2版.北京:电子工业出版社,2007:427.
  • 10Gilboa G,Sochen N,Zeevi Y Y.Forward-and-backward diffusion processes for adaptive image enhancement and denoising[J].IEEE Trans on Image Processing,2002,11(7):689-703.

二级参考文献21

  • 1Alvarez L,Lions P L,Morel J M.Image selective smoothing and edge detection by nonlinear diffusion[J].SIAM Journal of Numerical Analysis,1992,29(3):845-866.
  • 2Malladi R,Sethian J A.Image processing:Flows under Min/Max curvatureand mean curvature[J].Graphical models and image processing,1996,58(2):127-141.
  • 3Sochen N,Kimmel R,Malladi R.A general framework for low level vision[J].IEEE Transactions on Image Processing,1998,7 (3):310-318.
  • 4Lee S H,Seo J K.Noise removal with Gauss curvature-driven diffusion[J].IEEE Transactions on Image Processing,2005,14(7):904-909.
  • 5Yezzi A.Modified curvature motion for image smoothing and enhancement[J].IEEE Transactions on Image Proceasing,1998,7(3):345-352.
  • 6EI-Fallah A l,Ford G E.Mean curvature evolution and surface area scaling in image filtering[J].IEEE Transactiond on Image Proessing,1997,6(5):750-753.
  • 7Perona P,Malik J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Transactions on Pattern Recognition and Machine Intelligence,1990,12(7):629-639.
  • 8孟道骥,梁科.微分几何[M].2版.北京:科学出版社,2008.
  • 9Gilboa G,Sochen N,Zeevi Y Y.Variational denoising of partly textured images by spatially varying constraints[J].IEEE Transactions on Image Processing,2006,15(8):2281-2289.
  • 10Tschumperle D,Deriche R.PDE's based regularization of multivalued images and applications[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(4):506-517.

共引文献68

同被引文献35

  • 1殷苏民,鲍红力,吉彬斌,刘金亮,张建刚.基于小区域模板匹配的发动机缸体缺陷检测[J].传感器与微系统,2012,31(6):143-145. 被引量:5
  • 2孙夕平,杜世通,汤磊.相干增强各向异性扩散滤波技术[J].石油地球物理勘探,2004,39(6):651-655. 被引量:52
  • 3钱伟新,刘瑞根,王婉丽,祁双喜,王伟,程晋明.基于图像特征方向的各向异性扩散滤波方法[J].中国图象图形学报,2006,11(6):818-822. 被引量:17
  • 4Perona P,Malik J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(7):629-639.
  • 5Chao S,Tsai D.An improved anisotropic diffusion model for detail-and edge-preserving smoothing[J].Pattern Recognition Letters,2010,31(13):2012-2023.
  • 6Barbu T.Robust anisotropic diffusion scheme for image noise removal[J].Procedia Computer Science,2014,35:522-530.
  • 7Tong C,Sun Y,Payet N,et al.A general strategy for anisotropic diffusion in MR image denoising and enhancement[J].Magnetic Resonance Imaging,2012,30(10):1381-1393.
  • 8Sun J,Xu Z.Scale selection for anisotropic diffusion filter by Markov random field model[J].Pattern Recognition,2010,43(8):2630-2645.
  • 9Es B,Koren B,Blank H J.Finite-difference schemes for anisotropic diffusion[J].Journal of Computational Physics,2014,272:526-549.
  • 10Rudin L,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms[J].Physica D,1992,60(14):259-268.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部