期刊文献+

基于图像特征方向的各向异性扩散滤波方法 被引量:17

The Anisotropic Diffusion Methods Based on the Directions of the Image Feature
在线阅读 下载PDF
导出
摘要 传统的各向异性扩散滤波方法都是从偏微分方程本身出发的,理论上的分析较为复杂。本文研究了基于图像特征方向的内在正交坐标系,分析了在此框架下的扩散滤波机制,然后直接从该坐标系下建立各向异性扩散滤波方案。这样的扩散滤波方法更加直观,可以简化理论分析。在此框架下,提出了一种新的各向异性扩散滤波方法。数值实验结果表明,新的扩散滤波方法可以更好地考虑图像的局部特性,从而完成细节保护和噪声消除的双重功能。所以,基于图像特征方向建立的各向异性扩散滤波方法更能达到我们预期的效果,该设计方法是有效的。 Traditional anisotropic diffusion methods always come from PDE (partial differential equation) itself. Which results in complex theoretic analysis. The inner orthogonal coordination based on the directions of the image feature is discussed in this paper. Subsequently, anisotropic diffusion methods based on the inner orthogonal coordination can be constructed directly. Which are more intuitionistic than the traditional methods, and can simplify the analysis in theory as well. A new anisotropic diffusion filtering method which is based on this framework is proposed in this paper. The numerical results show that the new method takes the local feature of the image into good account and can accomplish both detail-preserving and noise-removing. The anisotropic diffusion methods based on the direction of the image feature proposed in the paper is efficient and can get anticipate results.
出处 《中国图象图形学报》 CSCD 北大核心 2006年第6期818-822,共5页 Journal of Image and Graphics
关键词 特征方向 各向异性扩散 偏微分方程(PDE) direction of the image feature, anisotropic diffusion, PDE(partial differential equation)
作者简介 钱伟新(1979~),男.现为中国物理研究院光学专业硕士研究生.主要研究方向为闪光照相CCD光电接收系统及其图像处理方法.已发表论文2篇.E-mail:qwensence@etang.com
  • 相关文献

参考文献9

  • 1Rudin L,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms [J].Physics D,1992,60 (1 ~ 4):259 ~ 268.
  • 2Catte F,Lions P,Morel J,et al.Image selective smoothing and edge detection by nonlinear diffusion[J].Science and Industry Advances with Mathmetics Journal on Numerical Analysis,1992,29 (1):182 ~ 193.
  • 3Alvarez L,Lions P,Morel J.Image selective smoothing and edge detection by nonlinear diffusion Ⅱ [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,J.Numerrical Analysis,1992,29 (3):845 ~ 866.
  • 4Weickert J.Coherence-enhancing diffusion filtering[ J].International Journal of Computer Vision,1999,31 (2/3):111 ~ 127.
  • 5Gilboa G,Sochen N.Regularized shock filters and complex diffusion [A].In:Proceedings of Europe Conference on Computer Vision [ C ],Denmark,Copenhagen,2002:399 ~ 413.
  • 6Perona P,Malik J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12 (7):629 ~ 639.
  • 7Chen Y M,Vemuri B C,Wang L.Image denoising and segmentation via nonlinear diffusion [ J ].Computers and Mathematics with Applications,2000,39(5/6):131 ~ 149.
  • 8Koenderink J.The structure of images [ J ].Biological Cybernetics,1984,50 (5):363 ~ 370.
  • 9Carmons Rene A,Zhong Sifen.Adaptive smoothing respecting feature directions [ J].IEEE Transactions on Image Processing,1998,7(3):353 ~358.

同被引文献123

引证文献17

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部