期刊文献+

有限节点驱动的微博社会网络话题推荐方法 被引量:1

Topic recommendation method with finite driving user nodes in micro-blogging
在线阅读 下载PDF
导出
摘要 针对微博在线社会网络中的话题推荐问题,研究了如何选取多个驱动用户节点使得推荐话题能够得到大的传播广度,提出了一种新的信息推荐方法,可以求得次优的驱动节点集合使得推荐话题得到近似最大的传播广度。通过三个环节进行计算:通过修正的PageRank算法求得影响力大的节点;计算第一步得到的每个节点引起的话题传播广度;计算多个节点联合驱动时话题传播的广度,选择使传播广度最大的驱动节点集合。实验结果表明选取的近似最优驱动节点集合能够使得推荐信息得到更大广度的传播。 Aiming at the topic recommendation problem in online social networks, this paper focuses on how to find a set of driving nodes which can make the information diffusion broadly, and proposes a new recommendation method that can obtain an approximately optimat set of driving nodes. This method includes three steps: finding the candidate set of driving nodes which have the greatest influence with an extended PageRank algorithm; calculating the breadth of topic diffusion for each driving node in candidate set; and calculating the breadth of topic diffusion for a number of joint driving nodes and finding an approxi- mately optimal set of driving nodes. Experimental results show that the achieved approximately optimal driving node set leads to larger breadth of topic diffusion.
出处 《计算机工程与应用》 CSCD 2013年第15期141-146,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.60905018) "十二五"国家科技支撑计划重点课题(No.2011BAK08B02)
关键词 在线社会网络 信息传播 话题推荐 节点影响力 动态贝叶斯网络 online social network information propagation topic recommendation user influence dynamic Bayesian network
作者简介 吴陈鹤(1987-),男,硕士研究生,研究领域为在线社会网络; 杜友田(1980-),男,博士,讲师,研究领域为在线社会网络,网络多媒体理解,机器学习; 苏畅(1988-),男,博士研究生,研究领域为在线社会网络,机器学习。E-mail:duyt@mail.xjtu.edu.ca
  • 相关文献

参考文献16

  • 1Katarzyna M, Przemystaw K.Social networks on the Intemet[J]. World Wide Web Journal,2013,16.
  • 2Alan M, Massimiliano M, Krishna P G, et al.Measurement and analysis of online social networks[C]//7th ACM SIG- COMM Conference on Internet Measurement,2007:24-26.
  • 3Zhao Jichang,Wu Junjie,Xu Ke.Weak ties: subtle role of information diffusion in online social networks[J].Physical Review E,2010,82( 1 ).
  • 4Ido G,Naama Z, Inbal R, et al.Social media recommenda- tion based on people and tags[C]//ACM SIGIR Conference, 2010: 194-201.
  • 5许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:548
  • 6黄创光,印鉴,汪静,刘玉葆,王甲海.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. 被引量:217
  • 7Saito K, Kimura M, Ohara K, et al.Behavioral analyses of information diffusion models by observed data of social net- work[C]//LNCS,2010: 149-158.
  • 8Tang Jie,Sun Jimeng,Wang Chi,et al.Social influence analy- sis in large-scale networks[C]//ACM SIGKDD,2009: 807-816.
  • 9Yang Jiang, Scott C.Predicting the speed, scale, and range of information diffusion in twitter[C]//Fourth International AAAI Conference on Weblogs and Social Media,2010:355-358.
  • 10Kristina L, Rumi G.Information contagion: an empirical study of the spread of news on digg and twitter social networks[C]//Fourth International AAAI Conference on We- blogs and Social Media,2010:90-97.

二级参考文献123

  • 1戚华春,黄德才,郑月锋.具有时间反馈的PageRank改进算法[J].浙江工业大学学报,2005,33(3):272-275. 被引量:27
  • 2黄德才,戚华春.PageRank算法研究[J].计算机工程,2006,32(4):145-146. 被引量:69
  • 3黄德才,戚华春,钱能.基于主题相似度模型的TS-PageRank算法[J].小型微型计算机系统,2007,28(3):510-514. 被引量:23
  • 4陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 5Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 6Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 7Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 8Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 9Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 10Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html

共引文献806

同被引文献12

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部