摘要
针对微博在线社会网络中的话题推荐问题,研究了如何选取多个驱动用户节点使得推荐话题能够得到大的传播广度,提出了一种新的信息推荐方法,可以求得次优的驱动节点集合使得推荐话题得到近似最大的传播广度。通过三个环节进行计算:通过修正的PageRank算法求得影响力大的节点;计算第一步得到的每个节点引起的话题传播广度;计算多个节点联合驱动时话题传播的广度,选择使传播广度最大的驱动节点集合。实验结果表明选取的近似最优驱动节点集合能够使得推荐信息得到更大广度的传播。
Aiming at the topic recommendation problem in online social networks, this paper focuses on how to find a set of driving nodes which can make the information diffusion broadly, and proposes a new recommendation method that can obtain an approximately optimat set of driving nodes. This method includes three steps: finding the candidate set of driving nodes which have the greatest influence with an extended PageRank algorithm; calculating the breadth of topic diffusion for each driving node in candidate set; and calculating the breadth of topic diffusion for a number of joint driving nodes and finding an approxi- mately optimal set of driving nodes. Experimental results show that the achieved approximately optimal driving node set leads to larger breadth of topic diffusion.
出处
《计算机工程与应用》
CSCD
2013年第15期141-146,共6页
Computer Engineering and Applications
基金
国家自然科学基金(No.60905018)
"十二五"国家科技支撑计划重点课题(No.2011BAK08B02)
关键词
在线社会网络
信息传播
话题推荐
节点影响力
动态贝叶斯网络
online social network
information propagation
topic recommendation
user influence
dynamic Bayesian network
作者简介
吴陈鹤(1987-),男,硕士研究生,研究领域为在线社会网络;
杜友田(1980-),男,博士,讲师,研究领域为在线社会网络,网络多媒体理解,机器学习;
苏畅(1988-),男,博士研究生,研究领域为在线社会网络,机器学习。E-mail:duyt@mail.xjtu.edu.ca