摘要
电力系统负荷与诸多影响因素之间是一种强耦合、多变量、严重非线性的关系,且这种关系具有动态性。传统预测方法精度不高,而采用动态回归神经网络(Elman)能更直接、更有效地反映系统的动态特性。该文建立了基于Elman神经网络的电力负荷预测模型,通过MATLAB仿真预测,对比Elman神经网络和BP神经网络的预测效果。仿真实验证明了Elman神经网络具有良好的动态特性、较快的训练速度、高精度等特点,表明Elman预测模型是一种新颖、可靠的负荷预测方法。
The relationship between the load of power system and other influencing factors is strong coupling,multivariable,very non-linear,and dynamic.Traditional prediction cannot realize high accuracy,while dynamic recurrent nerve network(Elman) can reflect the dynamic nature of the system in a more direct and effective way.A prediction model of power load was established based on Elman neural network in this paper.By cases of prediction,the modeling effect of Elman network and BP network structure was compared.Simulation experiment shows that Elman neural network bears features such as dynamic,fast in network training and high accuracy,which proves that Elman prediction model is a fresh and reliable way of power load prediction.
作者
井望隆
潘玉民
JING Wang-long,PAN Yu-min(College of Electronic Information Engineering,North China Institute of Science and Technology,Beijing 101601,China)
出处
《电脑知识与技术》
2013年第6期3871-3874,共4页
Computer Knowledge and Technology
基金
河北省教育厅科学技术研究项目(编号:Z2006439)
作者简介
井望隆(1989-),男,黑龙江勃利人,学士,主要研究方向为神经网络、智能控制;
潘玉民(1958-),男,硕士,副教授,主要研究方向为模式识别、复杂系统建模。