摘要
针对传统震害预测方法逐栋抽样计算建筑物抗震性能的不足,本文提出了一种基于蚁群聚类径向基(ACCRBF)网络模型的建筑物震害预测方法。依据不同地震动峰值加速度下多层砖房的实际震害资料,对模型进行训练,在模型的输入和输出之间建立映射关系,并利用这种映射关系对未知样本进行分类,实现对多层砖房的震害分析和预测。模型的输入为反映结构的震害影响因子,输出为给定的地震动峰值加速度下结构震害等级。研究表明,基于ACCRBF网络模型的多层砖房震害预测结果与震害实例基本吻合,具有推广应用价值。
To overcome the deficiency in the conventional seismic damage prediction method, in which the anti-earthquake behavior is evaluated by sampling survey, here we present a construction seismic damage prediction method based on ant colony clustering radial basis function (ACCRBF) neural network model. Through training the network on the basis of real seismic damage data, this method sets up the mapping relationship of the parameters between the inputs and outputs. Then The mapping relationship then can be adopted for sample classification, which makes it possible to realize the seismic damage evaluation and hazard prediction. The inputs of the model are the factors that affect the seismic damage, and the output of the model is the seismic damage level under certain peak ground acceleration. Our results show that the seismic damage prediction results from the ACCRBF neural model are in good agreement with the real examples. Therefore, it is worthy of promotion and application in the future.
出处
《震灾防御技术》
CSCD
2013年第1期90-96,共7页
Technology for Earthquake Disaster Prevention
关键词
ACCRBF网络
多层砖房
震害预测
震害因子
破坏等级
ACCRBF neural networks
Multistory masonry buildings
Seismic damage prediction
Factorsfor seismic damage
Damage degree
作者简介
杨秀萍,女,生于1986年。2011年7月大连理工大学防灾减灾及防护工程专业硕士毕业。主要研究方向为结构抗震与麓灾防御。E-mail:jmdzj2011@163.com