期刊文献+

六边形蜂窝等效面外剪切模量预测及其尺寸效应 被引量:10

PREDICTIONS OF EFFECTIVE OUT-PLANE SHEAR MODULUS AND SIZE EFFECT OF HEXAGONAL HONEYCOMB
在线阅读 下载PDF
导出
摘要 给出了预测六边形蜂窝材料等效剪切模量及其尺寸效应的圆筒扭转力学模型和扭转能量法,建立了等效面外剪切模量G13相对于材料体分比v、周向单胞数n、圆筒半径r和单胞层数参数m变化的解析表达式;同时将扭转能量法、有限元数值模拟计算和G--A经典细观力学方法进行了比较,从理论上揭示并验证了尺寸效应的存在性.结果表明,当蜂窝体胞尺寸相对结构尺寸无穷小时,预测结果趋近于细观力学方法的结果.此外,利用周期性蜂窝材料的结构对称特性,使用体胞子结构有限元计算模型进行等效面外剪切模量及其尺寸效应的预测,在不影响计算结果的前提下极大地提高了计算效率. In this paper, a cylinder torsion model and a torsion energy method are proposed to predict equivalent out- plane shear modulus of hexagon cellular materials. An analytical expression for its size effect is constructed in terms of volume fraction(v), number of cells in circumference(n), radius of the hollow cylinder(r) and number parameter of cell layers(m). Comparisons are made among the results of torsion energy method, finite element numerical simulation and G-A microstructure mechanical method. The size effect is revealed and proved theoretically. Numerical results show that when the cell size trends to be infinitely small with regard to the size of the structure, predicted results approach those obtained by mesoscopic mechanics method. Due to the cyclic symmetry of periodic cellular materials, it is shown that the computing efficiency can be greatly increased by means of the substructure model.
出处 《力学学报》 EI CSCD 北大核心 2013年第2期288-292,共5页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家重点基础研究发展计划(2011CB610304) 国家自然科学基金(10925212)资助项目~~
关键词 六边形蜂窝材料 圆筒扭转力学模型 等效面外剪切模量 尺寸效应 扭转能量法 G-A细观力学方法 hexagonal honeycomb torsion of cylinder model effective shear modulus size effect torsion energy method G-A microstructure mechanical method
作者简介 张卫红,教授,主要研究方向:结构优化设计.E-mail:zhangwh@nwpu.edu.cn
  • 相关文献

参考文献10

  • 1Kelsey S, Gellatly R, Clark B. The shear modulus of foil honeycomb cores. Aircraft Engineering, 1964, 30(10): 294-302.
  • 2Grediae M. A finite element study of the transverse shear in honeycomb Core. International Journal of Solids and Structures, 1993, 30(13): 1777-1788.
  • 3Meraghni F, Desrumaux F, Benzeggagh ML. Mechanical behaviour of cellular core for structural sandwich panels. Composites Part A: Applied Science and Manufacturing, 1999, 30(6): 767-779.
  • 4Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties. Cambridge: Cambridge University Press, 1997.
  • 5Onck PR,Andrews EW,Gibson LJ. Size effects in ductile cellular solids. Part I: Modeling. International Journal of Mechanical Sciences, 2001, 43: 681-699.
  • 6Lestari W, Qiao PZ, Song GB, et al. Evaluation of bending and shear moduli of sandwich structures by dynamic response based technique. In: Proceeding of 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, 2003.
  • 7Tantikom K., Aizawa T, Mukai T. Symmetric and asymmetric deformation transition in the regularly cell-structured materials Part I: Experimental study. International Journal of Solids and Structures, 2005, 42: 2199-2210.
  • 8戴高明,张卫红.周期性多孔材料等效杨氏模量的尺度效应研究[J].中国科学(G辑),2009,39(7):955-963. 被引量:14
  • 9张卫红,骆金威,戴高明,张进.周期性多孔材料等效剪切模量与尺寸效应研究[J].力学学报,2011,43(1):144-153. 被引量:6
  • 10Wang AJ, McDowell DJ. Optimization of a metal honeycomb sandwich beam-bar subjected to torsion and bending. International Journal of Solids and Structures, 2003, 40: 2085-2099.

二级参考文献17

  • 1阎军,程耿东,刘书田,刘岭.周期性点阵类桁架材料等效弹性性能预测及尺度效应[J].固体力学学报,2005,26(4):421-428. 被引量:25
  • 2Weihong Zhang,Gaoming Dai,Fengwen Wang,Shiping Sun,Hicham Bassir.Using strain energy-based prediction of effective elastic properties in topology optimization of material microstructures[J].Acta Mechanica Sinica,2007,23(1):77-89. 被引量:16
  • 3Gibson L J, Ashby MF, Schjer GS. The mechanics of two- dimensional cellular materials. Proc IE Soc Lond, 1982, 382:25-42.
  • 4Evans AG, Hutchinson JW, Fleck NA, et al. The topological design of multifunctional cellular metal . Progress in Materials Science, 2001, 46:309-327.
  • 5Onck PR, Andrews EW, Gibson LJ. Size effects in ductile cellular solids. Part I: modeling. International Journal of Mechanical Sciences, 2001, 43:681-699.
  • 6Tantikom K, Aizawa T, Mukai T. Symmetric and asymmetric deformation transition in the regularly cell-structured materials Part I: experimental study. International Journal of Solids and Structures, 2005, 42:2199-2210.
  • 7Lestari W, Qiao PZ, Song GB, et al. Evaluation of bending and shear moduli of sandwich structures by dynamic response based technique. In: 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Norfdk, Virginia, USA, 2003-4-7-10, USA: American Inst. Aeronautics and Astronautics Inc. 2003. 4747-4755.
  • 8Pecullan S, Gibiansky LV, Torquato S. Scale effects on the elastic behavior of periodic and hierarchical two dimensional composites. Journal of the Mechanics and Physics of Solids, 1999, 47:1509-1542.
  • 9Fish J, Shek K. Multi-scale analysis of composite materials and structures. Composites Science and Technology, 2000, 60:2547-2556.
  • 10Kouznetsova V, Geers MGD, Brekelmaus WAM. Multiscale constitutive modeling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. International Journal for Numerical Methods in Engineering, 2002, 54:1235-1260.

共引文献18

同被引文献111

引证文献10

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部