期刊文献+

细观力学方法预测单向复合材料的宏观弹性模量 被引量:8

Semi-Theoretical and Engineering Prediction of Macroscopic Elastic Moduli of Unidirectional Composites
在线阅读 下载PDF
导出
摘要 基于细观力学预测复合材料宏观弹性模量的两种方法,以单向复合材料为研究对象,从理论上推导了复合材料三维桥联模型公式,并利用CAE软件M sc.Patran/N astran建立了RVE模型,进行了有限元模拟计算。两种方法计算的结果与实验均有较好的一致性,表明两种方法都是能够较好计算单向复合材料的宏观弹性模量。 Aim. Engineers need calculation methods for predicting elastic moduli of unidirectional composites in order to reduce greatly the amount of testing otherwise needed. We present two methods of calculation. (1) the extension of Huang' semi-theoretical 2-D method to become a 3-D method; (2) engineering method, which is less accurate than the above-mentioned 3-D method but is more widely applicable. In the full paper, we explain in detail our two methods; in this abstract, we just add some pertinent remarks to listing the two topics of explanation: (A) semi-theoretical derivation of 3-D bridging model formulas; (B) finite element engineering model and calculation; under topic (A) we derive eqs. (19) through (23) in the full paper for calculating respectively the five independent elastic moduli, E11, v12, E22, G12, G23; under topic (B), Figs. 1 and 2 in the full paper show the RVE(representative volume element) finite element model; also under topic (B), we use software Msc. PATRAN/NASTRAN to simulate RVE model. Finally we give a numerical example, whose 3-D semi-theoretical calculation results and RVE simulation results are given in Table 2 in the full paper. Table 2 shows that the 3-D semitheoretical results are more accurate but the more widdly applicable RVE model simulation results are still sufficiently accurate for engineering applications.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2006年第6期787-790,共4页 Journal of Northwestern Polytechnical University
基金 航空科学基金(04B53012)资助
关键词 细观力学 单向复合材料 宏观弹性模量 Msc.Patran/Nastran 三维桥联模型 RVE unidirectional composites, macroscopic elastic modulus, Msc. PATRAN/NASTRAN, 3-D bridging model, RVE(representative volume element)
作者简介 吕毅(1981-),西北工业大学博士生,主要从事复合材料细观力学的研究。
  • 相关文献

参考文献7

二级参考文献25

  • 1吴德隆,郝兆平.五向编织结构复合材料的分析模型[J].宇航学报,1993,14(3):40-51. 被引量:60
  • 2庞宝君.裂纹尖端位于各向同性材料及正交异性材料界面Ⅰ型裂纹的塑性应力场[J].哈尔滨工业大学学报,1996,28(1):112-118. 被引量:2
  • 3韩红梅.[D].西安:西北工业大学,2002.
  • 4[1]Eshelby J D. The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problem [C]. London: Proceedings of the Royal Society Series A, 1957.
  • 5[2]Hill R. A Self-consistent Mechanics of Composite Materials [J]. J Mech Phys Solids, 1965,13:213-222.
  • 6[3]Mori T, Tanaka K. Average Stress in Matrix and Average Enengy of Materials with Misfitting Inclusions[J]. Acta Metall,1973,21:571-574.
  • 7[4]Caruso J J. Application of Finite Element Substructuring to Composites Micromechanics [R]. NASA TM-83729, 1984.
  • 8[5]Brockenbrough J R, Suresh S, Wienecke H A. Deformation of MMCs with Continuous Fibers: Geometrical Effects of Fiber Distribution and Shape [J]. Acta Metall Mater, 1991, 39: 735-752.
  • 9[6]Zhang W C, Evans K E. Numerical Prediction of Mechanical Properties of Anisotropic Composite Materials [J]. Computers and Structures, 1988,29(3):413-422.
  • 10[7]Fang Daining, Liu Tieqi . On the effect of Fiber Shape and Packing Array on Elastic Properties of Fiber-Polymer-Matrix Composites [J]. Inter J Polymeric Mater, 1996,34(1): 75-90.

共引文献72

同被引文献84

引证文献8

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部