期刊文献+

基于共振峰谐波特征和支持向量机的VDR人声检测方法

Speech detection method for VDR based on formant-consonance characteristic and SVM
在线阅读 下载PDF
导出
摘要 针对VDR人声检测的特殊要求,从语音的产生机理出发,结合驾驶室环境下各种声音特点,提出了基于共振峰谐波特征和支持向量机的人声检测方法。首先采用线性预测分析方法提取共振峰频率,再从线性预测分析的残差信号中提取低频段谐波个数和谐波频率间隔的方差,作为人声检测的主要特征参数,然后用支持向量机分类器进行人声检测,以在驾驶室内实际采集的多种语音和非语音构成语料库进行实验,得到了较高的检测正确率。 Speech detection for voyage data recorder (VDR) has some special requires. After the analysis of speech generation process and the character of all kinds of sounds in steer house on ships, a method based on formant-consonanee characteristic and support vector machines(SVM) was developed. First formant frequency was obtained by linear prediction analysis (LPA) , and the number of eonsonance and standard deviation of consonance frequency intervals were obtained from residual error of LPA. These were the main characters for speech detection. The SVM was chosen to classify the speech and non-speech. We test the method in experiments by the speech and non-speech signals collected in steer house, and high accuracy rate of detection was obtained.
出处 《舰船科学技术》 北大核心 2013年第2期99-102,共4页 Ship Science and Technology
关键词 共振峰 谐波 支持向量机 VDR 人声检测 formant consonance support vector machines VDR speech detection
作者简介 作者简介:李正友(1978-),男,博士研究生,主要从事声学在航海保障中的应用研究。
  • 相关文献

参考文献7

二级参考文献18

  • 1Ramirez J, Segura J, Benitez C, et al. Efficient voice activity detection algorithms using long-term speech information [J].Speech Commun, 2004, 42(3-4) : 271 - 287.
  • 2Sohn J, Kim N S, Sung W. A statistical model based voice activity detection [J]. IEEE Signal Process Lett, 1999, 6(1):1-3.
  • 3Shin J, Chang J, Kim N. Voice activity detection based on statistical models and machine learning approaches [J]. Computer Speech & Language, 2010, 24(3): 515- 530.
  • 4Jo Q, Chang J, Shin J, Kim N. Statistical model-based voice activity detection using support vector machine [J]. IET Signal Process, 2009, 3(3) : 205 - 210.
  • 5Ramirez J, Yelamos P, Gorriz J, at al. SVM-based speech endpoint detection using contextual speech features [J]. Electron lett, 2006, 42(7): 426-428.
  • 6Scholkopf B, Smola A J. Learning with Kernels [M]. Cambridge, MA: MIT Press, 2002.
  • 7YU Tao, Hansen J H L. Discriminative training for multiple observation likelihood ratio based voice activity detection [J]. IEEE Signal Process Lett, 2010, 17(11): 897-900.
  • 8Ramirez J, Segura J C, Gorriz J M, at al. Improved voice activity detection using contextual multiple hypothesis testing for robust speech recognition[J]. IEEE Trans Audio, Speech Lang Process, 2007, 15(8): 2177-2189.
  • 9Ramirez J, Segura J C, Benitez C, et al. Statistical voice activity detection using a multiple observation likelihood ratio test [J]. IEEE Signal Process Lett, 2005, 12(10): 689 -692.
  • 10Ephraim Y, Malah D. Speech enhancement using a minimummean square error short-time spectral amplitude estimator [J]. IEEE Trans Audio, Speech Lang Process, 1984, 32(6): 1109-1121.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部