期刊文献+

基于度量学习的邻域k凸包集成方法 被引量:2

Neighbor k-convex-hull ensemble method based on metric learning
在线阅读 下载PDF
导出
摘要 k局部凸包分类方法通过改进k近邻算法在处理小样本问题时的决策边界而显著提高分类性能,k子凸包分类方法通过克服k凸包分类对类数和样本环状分布的敏感性而改善了分类性能。但是,该方法仍然对样本距离度量方法敏感,并且在k邻域内不同类的样本数经常严重失衡,导致分类性能下降。针对上述问题,文章提出了一种邻域k凸包分类方法,并通过引入距离度量学习和集成学习技术来提高算法对样本空间度量的鲁棒性。大量实验表明,文中提出的基于度量学习的邻域k凸包集成方法具有显著的分类性能优势。 The k-local convex distance nearest neighbor classifier(CKNN) corrects the decision bounda- ry of kNN when the amount of the training data is small, thus improving the performance of kNN. The k sub-convex-hull classifier(kCH) weakens the sensitivity of CKNN to the number of classes and the ring structure of samples distribution, hence improves the classification performance. But this method is still sensitive to the distance metric. Moreover, different types of samples in k nearest neighbors of a test instance are often seriously imbalanced, which leads to the decline of classification performance. In this paper, a neighbor k-convex-hull classifier(NCH) is proposed to address these problems. The robustness of the neighbor k-convex-hull classifier is improved by the techniques of metric learning and ensemble learning. Experimental results show that the proposed neighbor k-con- vex-hull classifier ensemble method, which is based on metric learning, is significantly superior to some state-of-the-art nearest neighbor classifiers.
作者 牟廉明
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期171-175,共5页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(10872085) 四川省科技厅应用基础研究基金资助项目(07JY029-125) 四川省教育厅重大培育资助项目(07ZZ016) 内江师范学院自然科学重点基金资助项目(12NJZ03)
关键词 邻域k凸包 度量学习 K近邻 集成学习 neighbor k-convex-hull metric learning k-nearest neighbor ensemble learning
作者简介 牟廉明(1971-),男,重庆万州人,内江师范学院副教授.
  • 相关文献

参考文献10

  • 1Tan S. An effective refinement strategy for KNN text classiffer[J].Expert Systems with Applications,2006.290-298.
  • 2张浩,谢飞.基于语义关联的文本分类研究[J].合肥工业大学学报(自然科学版),2011,34(10):1501-1504. 被引量:4
  • 3周晓飞,姜文瀚,杨静宇.l_1范数最近邻凸包分类器在人脸识别中的应用[J].计算机科学,2007,34(4):234-235. 被引量:5
  • 4Vincent P,Bengio Y. K-local hyperplane and convex distance nearest neighbor algorithms[A].2001.985-992.
  • 5牟廉明.k子凸包分类方法[J].山西大学学报(自然科学版),2011,34(3):374-380. 被引量:5
  • 6Weinberger K,Blitzer J,Saul L. Distance metric learning for large margin nearest neighbor classification[A].2006.1473-1480.
  • 7Zhou Z H. Ensemble learning[M].Beilin:Springer-Verlag,2009.270-273.
  • 8Zhou Z H,Yu Y. Ensembling local learners through multimodal perturbation[J].IEEE Transactions on Systems Man and Cybernetics-Part B:Cybernetics,2005,(04):725-735.
  • 9琚旭,王浩,姚宏亮.基于Boosting的支持向量机组合分类器[J].合肥工业大学学报(自然科学版),2006,29(10):1220-1222. 被引量:7
  • 10Asuncion A. UCI machine learning repository[DB/OL].http://www.ics.uci.edu/~mlearn/MLRepository.html,2012.

二级参考文献32

  • 1李荣陆,王建会,陈晓云,陶晓鹏,胡运发.使用最大熵模型进行中文文本分类[J].计算机研究与发展,2005,42(1):94-101. 被引量:96
  • 2张剑,李春平.基于WordNet概念向量空间模型的文本分类[J].计算机工程与应用,2006,42(4):174-178. 被引量:16
  • 3苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:391
  • 4张文良,黄亚楼,倪维健.一种基于聚类的文本特征选择方法[J].计算机应用,2007,27(1):205-206. 被引量:10
  • 5Yang Y, Lin X. A re-examination of text categorization methods [C]//The 22 nd Annual ACM SIGIR Conf on Reaearch and Development in Information Retrieval. New York: ACM Press, 1999 : 42- 49.
  • 6Salton G,Wong A,Yang C S. On the specification of term values in automatic indexing [J]. Journal of Documenta- tion, 1973,29(4) : 351- 372.
  • 7Yang Y. A comparative study on feature selection in text categorization [C]//Proceeding of the Fourteenth Interna- tional Conference on Machine Learning (ICML 97), 1997 : 412-420.
  • 8Grzegorz K, Daniel M, Kevin K. Cognates can improve sta- tistical translation models [C]//Proeeedings of HLT- NAACL 2003: Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, 2003:46-48.
  • 9VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 10Dietterich T G.Machine learning research:Four current directions[J].AI Magazine,1997,18(4):97-136.

共引文献17

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部