期刊文献+

一种广义不可分的支持向量机算法 被引量:6

Generalized C-Support Vector Machine Algorithm
在线阅读 下载PDF
导出
摘要 针对标准的C-SVM(C-support vector machine)算法在处理很多实际分类问题时,对识别错误代价损失差异很大的极端情况表现出的局限性,提出一种通用的广义支持向量机算法。根据识别错误后所付出的代价,可以把最优分类面向代价损失低的一方进行推移,留给代价损失高的一方更大的空间,提高其识别率,从而减小识别错误后带来的代价损失。该方法进一步提高了标准C-SVM的适用性以及样本的正确识别率,将新算法应用到高分辨雷达距离像的识别中,实验证明,广义C-SVM能取得比传统C-SVM更好的识别效果。 Standard C-support vector machine(C-SVM)algorithm has certain limitation when dealing with many factual pattern classification problems,especially in the extreme case such as the recognition error cost loss in great difference.A kind of generalized C-SVM algorithm is introduced.By estimating the cost of the recognition error,optimal separating hyperplane can be translated into the low cost passage,and leaves more space for the high lost cost to increase recognition rate,thus reducing the damage of recognition error.The new method improves the applicability of C-SVM and sample recognition correct rate.When applied to radar high resolution range profile′s recognition,experimental results show that the proposed method can achieve better recognition effect than the traditional method.
出处 《数据采集与处理》 CSCD 北大核心 2015年第2期434-440,共7页 Journal of Data Acquisition and Processing
关键词 广义支持向量机 最优分类面 识别错误 高分辨雷达距离像 generalized C-support vector machine optimal separating hyperplane recognition error radar high resolution range profile
作者简介 邹永祥(1973-),男,副教授,研究方向:信号与智能信息处理,E-mail:zyx688953@163.com; 吴宗亮(1979-),男,博士研究生,讲师,研究方向:信号处理、雷达目标识别。
  • 相关文献

参考文献10

  • 1Vapnik V N. Statistical learning theory[M]. New York: Wiley, 1998.
  • 2Lin Kengpei, Chen Mingsyan. On the design and analysis of the privacy-preserving SVM classifier[J]. IEEE Trans on Knowledge and Data Engineering, 2011,23 (11) : 1704-1717.
  • 3谢志鹏.POSITIVE DEFINITE KERNEL IN SUPPORT VECTOR MACHINE(SVM)[J].Transactions of Nanjing University of Aeronautics and Astronautics,2009,26(2):114-121. 被引量:3
  • 4Xu qihua, Geng shuai. A fast SVM classification learning algorithm used to large training set[C]//Intelligent System Design and Engineering Application (ISDEA). Piscataway, NJ: IEEE, 2012:15-19.
  • 5Hsu C, Lin C. A comparison of methods for multiclass support vector machines[J]. IEEE Trans on Neural Networks, 2002,13(2):415- 425.
  • 6Ben Fei, Liu Jinbai. Binary tree of SVM: A new fast multiclass training and classification algorithm[J]. IEEE Trans on Neu- ral Networks, 2006,17(3) : 696-704.
  • 7崔建国,李一波,李忠海,刘建民,徐心和.基于小波包与支持向量机的复杂信号模式识别[J].数据采集与处理,2008,23(2):163-167. 被引量:20
  • 8Vapnik V N. The nature of statistical learning theory[M]. New York: Spinger-Verlag, 1999.
  • 9薛贞霞,刘三阳,齐小刚.基于壳向量和中心向量的支持向量机[J].数据采集与处理,2009,24(3):328-334. 被引量:3
  • 10闫志刚,杜培军.多类支持向量机推广性能分析[J].数据采集与处理,2009,24(4):469-475. 被引量:7

二级参考文献27

共引文献29

同被引文献53

  • 1牟廉明.k子凸包分类方法[J].山西大学学报(自然科学版),2011,34(3):374-380. 被引量:5
  • 2张华伟,王明文,甘丽新.基于随机森林的文本分类模型研究[J].山东大学学报(理学版),2006,41(3):5-9. 被引量:60
  • 3Vapnik V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2009.
  • 4NelloCristianini JohnShawe-Taylor 李国正 王猛 曾华军译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 5LeCun Y,Bottou L,Bengio Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
  • 6Ossama A H,Mohamed A R,Jiang H,et al.Applying convolutional neural networks concepts to hybrid NN-HMM modelfor speech recognition[C]∥2012IEEE International Conference on Acoustics,Speech and Signal Processing.Kyoto,Japan:IEEE Computer Society Press,2012:4277-4280.
  • 7Turaga S C,Murray J F,Jain V,et al.Convolutional networks can learn to generate affinity graphs for image segmentation[J].Neural Computation,2010,22(2):511-538.
  • 8Krizhevsky A,Sutskever I,Hinton G E.Image net classification with deep convolutional neural networks[J].Advances inNeural Information Processing Systems,2012,25(2):1097-1105.
  • 9Ciresan D,Meier U,Schmidhuber J.Multi-column deep neural networks for image classification[C]∥2012IEEE Conferenceon Computer Vision and Pattern Recognition.[S.l.]:IEEE Computer Society Press,2012:3642-3649.
  • 10Arel I,Rose D C,Karnowski T P.Deep machine learning—A new frontier in artificial intelligence research[J].Computation-al Intelligence Magazine,2010,5(4):13-18.

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部