期刊文献+

抗突发干扰的虚拟天线波束形成技术

Beam-forming for burst interference suppression using virtual antenna
在线阅读 下载PDF
导出
摘要 针对现有的虚拟天线无法抑制落在变换区域之外的突发干扰的问题,提出了基于流形长度虚拟天线波束形成方法,新构造的虚拟阵列流形具有范德蒙德结构,可以应用子空间类算法;且流形长度变化率与实际流形长度变化率相等,允许在整个实际阵列扫描区域进行内插变换并使误差很小,避免了干扰落在变换区域外的情况.在这种虚拟天线上应用最小方差无畸变响应(minimum variance distortionless response,MVDR)波束形成方法,计算机仿真结果表明,在突发干扰处仍然能够形成零点,主瓣对准期望信号方向,在电磁环境变化剧烈的场合可以有效工作. The arc length based virtual antenna beam forming method is proposed in this paper,for the purpose of overcoming the issue of the burst interference lying out of transformation areas that cannot be inhibited by utilizing the existing virtual antenna technique.The new virtual array is constructed with Vandermonde manifold to apply subspace approaches,and simultaneously its arc length change rate is equal to that of the real array.This can ensure the interpolation within the whole real array scanning area and a fairly minor transformation error,avoiding the situation the interference lies out of interpolation area.By employing the minimum variance distortionless response(MVDR) beam forming method on this virtual antenna array,the computer simulation results show that the nulls can also be generated in the burst interference directions,and the main lobe points to the desired signal direction.The conclusion indicates the method presented works effectively even in the situation that electromagnetic environment varies severely.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第12期1534-1538,共5页 Journal of Harbin Engineering University
关键词 突发干扰 波束形成 虚拟天线 变换区域 范德蒙德结构 最小方差无畸变响应 burst interference beam-forming virtual antenna transformation area Vandermonde manifold MVDR
作者简介 李文兴(1960-),男,教授,博士生导师; 李弋鹏(1986-),男,博士研究生.通信作者:李弋鹏,E-mail:liyipeng@hrbeu.edu.cn.
  • 相关文献

参考文献12

  • 1李冰,刘胜,张玉廷.基于FDTD的舰载活动设备电磁特性研究[J].哈尔滨工程大学学报,2011,32(7):916-920. 被引量:1
  • 2FRIEDLANDER B. The root-music algorithm for direction finding with interpolated arrays [ J]. IEEE Transactions on Signal Processing, 1993, 30(1) : 15-29.
  • 3王永良,陈辉,万山虎.一种有效的超分辨空间谱估计方法——虚拟阵列变换法[J].中国科学(E辑),1999,29(6):518-524. 被引量:14
  • 4丁卫安,马远良.虚拟阵列变换法解相干信号MUSIC算法研究[J].微波学报,2008,24(2):27-30. 被引量:12
  • 5LI Wenxing, LI Yipeng, GUO Lili, et al. An effective tech- nique for enhancing anti-interference performance of adap- tive virtual antenna array[J]. ACES Journal, 2011, 26 (3) : 234-240:27-32.
  • 6LI Wenxing, LI Yipeng, GUO Lili, et al. Adaptive beam- forming technique for virtual antenna using modified interpo- lated Spatial Smoothing algorithm[ J]. PIERS online, 2011, 7(7) : 617-620.
  • 7LI Wenxing, LI Yipeng, YU Wenhua. On adaptive beam- forming for coherent interference suppression via virtual an- tenna array [ J ]. Progress in Electromagnetics Research, 2012, 125: 165-184.
  • 81苏保伟.阵列数字波束形成技术研究[D].长沙:国防科技大学,2006:39-55.
  • 9WEISS A J, FRIEDLANDER B. Performance analysis of spa- tial smoothing with interpolated arrays [ J ]. IEEE Transac- tions on Signal Processing, 1993, 41 (5) : 1881-1892.
  • 10BIHREN M, PESAVENTO M, BOHME J F. Virtual ar- ray design for array interpolation using differential geometry [ C ]//Proe ICASSP. Montreal, Canada, 2004, 2 ( 2 ) : 229-232.

二级参考文献25

  • 1GORDON B. Degaussing: The demagnetization of ships [J]. Electronics and Powers, 1984, 30(6) : 473-476.
  • 2DORZE F L, BONGIRAUD J P, COULOMB J L, et al. Modeling of degaussing coils effects in ships by the method of reduced scalar potential jump [ J ]. IEEE Trans on Magnetics, 1998, 34(5): 2477-2480.
  • 3GIANNOPOULOS A. An improved new implementation of complex frequency shifted PML for FDTD method [ J ]. IEEE Trans on Antennas and Propagation, 2008, 56 (9) : 2995 -3000.
  • 4ZHENG H X, LEUNG K W. A nonorthogonal ADI-FDTD algorithm for solving two dimensional scattering problems [J]. IEEE Trans on Antennas and Propagation, 2009, 57 (12) : 3891-3902.
  • 5LEE J F, PALANDECH R, MITrRA R. Modeling three dimensional discontinuities in waveguides using nonorthogonal FDTD algorithm[J]. IEEE Trans on Microwave Theory and Techniques, 1992, 40(2) : 346-351.
  • 6FUSCO M A, SMITH M V, GORDON L W. A three-dimensional FDTD algorithm in curvilinear coordinates [ J ]. IEEE Trans on Antennas and Propagation, 1991, 39(10) : 1463-1471.
  • 7ESSELLE K P, OKONIEWSKI M, STUCHLY M A. Analysis of sharp metal edges at 45° to the FDTD grid[J]. IEEE Microwave and Guided Wave Letters, 1999, 9(6) : 221-223.
  • 8YEE K S, CHEN J S, CHANG A H. Conformal finite- difference time-domain (FDTD) with overlapping grids [J]. IEEE Trans on Antennas and Propagation, 1992, 40 (9) : 1068-1073.
  • 9Van TREES H L. Optimum array processing [ J ]. New York: John Wiley & Sons Inc, 2003: 3-5.
  • 10CAPON J. High-resolution frequency-wavenumber spectrum analysis [ J ]. Proceedings of the IEEE, 1969, 57 ( 8 ) : 1408-1418.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部