期刊文献+

基于径向基神经网络的宫颈癌肿瘤标志物的诊断系统 被引量:2

THE TUMOR MARKERS OF CERVICAL CANCER IN THE DIAGNOSIS SYSTEM BASED ON RBF NEURAL NETWORK
在线阅读 下载PDF
导出
摘要 目的建立基于径向基神经网络的宫颈癌肿瘤标志物的诊断系统。方法采集体检中心及妇科门诊、病房病例资料。统计血清肿瘤标志物水平,建立径向基神经网络的诊断系统。结果五种血清肿瘤标志物各组间有极显著差异,p<0.01;神经网络的的判别的准确率为100%。结论基于径向基神经网络的血清肿瘤标志物的诊断系统方法可行,性能良好。 Objective To establish the RBF neural network based on the cervical cancer tumor markers in the diagnosis system. Methods To collect the medical center and gynecological clinic, ward ease information. Calculated the levels of tumor markers in serum, and establishment of radial basis function neural network diagnosis system. Results The five kinds of serum tumor markers among the groups had significant difference, p 〈 0.01, and neural network identification accuracy rate was 100%. Conclusion RBF neural network based on the serum tumor markers in the diagnosis system was feasible, with good performance.
出处 《现代医院》 2012年第10期12-15,共4页 Modern Hospitals
基金 广东省科技厅基金资助项目(编号:2009B030801353)
关键词 径向基神经网络 肿瘤标志物 宫颈癌 RBF, tumor marker, cervical cancer
  • 相关文献

参考文献12

  • 1FOROUZANFAR M H,FOREMAN K J, DELOSSANTOS A M’et al. Breast and cervical cancer in 187 countries between 1980and 2010: a systematic analysis [ J j. Lancet, 2011, 378 ( 9801 );1461 -1484.
  • 2GROHS D H. Challenges in cervical cancer screening: what clini-cians, patients and the general public need to know[ J]. Acta Cy-tol, 1996,40(1) :133 -137.
  • 3蒋静,邓青.宫颈癌的筛查方法及其评价[J].中国妇幼保健,2008,23(20):2900-2902. 被引量:26
  • 4黄秀霞,张瑞娟.宫颈病变8201例临床分析[J].现代医院,2010,10(9):21-22. 被引量:9
  • 5MURPHY G P,SNOW P, SIMMONS S J, et al. Use of artificialneural networks in evaluating prognostic factors determining the re-sponse to dendritic cells pulsed with PSMA peptides in prostatecancer patients [J]. Prostate, 2000,42( 1 ) :67 -72.
  • 6ALKIM E, GURBOZ E, KILIQ E. A fast and adaptive automateddisease diagnosis method with an innovative neural network model[J]. Neural Netw, 2012,33:88 -96.
  • 7ANDERSSON B,ANDERSSON R, OHLSSON M. Prediction ofsevere acute pancreatitis at admission to hospital using artificialneural networks[ J]. Pancreatology, 2011,11(3) :328 -335.
  • 8周润景,张丽娜.模糊与神经网络设计[M].北京:电子工业出版社,2010:197-210.
  • 9PUTHUCODE - EASWARAN S,NAIK R,ATHAVALE R, et al.Comparison of pre - treatment CYFRA 21-1 and SCC - Antigenassay in primary cervical carcinoma - a preliminary report [ J]. JObstet Gynaecol, 2005 ,25(5) :486 -488.
  • 10MOLINA R,AUGE J M,FILELLA Xt et al. Pro - gastrin — relea-sing peptide ( proGRP) in patients with benign and malignant dis-eases :comparison with CEA, SCC,CYFRA 21-1 and NSE inpatients with lung cancer [ J]. Anticancer Res,2005 ,25 ( 3A):1773 -1778.

二级参考文献25

共引文献33

同被引文献18

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部