期刊文献+

改进共沉淀法制备LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2正极材料 被引量:2

Preparation of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 cathode material by improved co-precipitation method
在线阅读 下载PDF
导出
摘要 采用改进共沉淀法制备LiC01/3Nil/3Mnl/3O2正极材料,该法与传统共沉淀法相比,在共沉淀的过程中增加络合N(Nrl3H20)和分散N(PEO)。对比研究2种方法制得的产品的形貌和性能。研究结果表明:采用改进共沉淀法制备得到的NIl/3Co1/3Mnl/3(OH)2前躯体呈球形二次颗粒,粒径为2μm左右,是由球形和片状的一次颗粒组装而成;其与LiOH充分研磨煅烧制得的正极材料LiC01/3Nil,3Mnl,302,振实密度达到2.78g/cm3,在0.2C倍率和2.80~4.25V的电压范围内,首次充、放电比容量分别为185.2和158.3mA-h/g,30次循环后放电比容量为142.8mA-h/g,容量保持率高达90.2%,电化学性能得到很大的改善。 LiCol/3Nil/3Mnl/302 cathode material was synthesized by improved coprecipitation method, which was compared with conventional coprecipitation method, NH3"H20 for chelator and PEG for dispersant were added into the solution during the process of preparing the precursor. The appearance and property of products prepared by improved and conventional coprecipitation method were studied. The result reveals that Nil/3Cox/3Mnl/3(OH)2 precursor synthesized by improved coprecipitation method has spherical secondary particle with the diameter of about 2 ~rn assembled by the spherical and flaky primary particle, and the tap density of as-prepared LiCol/3Niu3Mna/302 calcinatedby precursor and LiOH is 2.78 g/cm3. Besides, its the initial charge/discharge capacity is 185.2/158.3 mA.h/g at 0.2C rate in voltage range of 2.80-4.25 V, respectively, and 90.6% of the initial discharge capacity is retained after 30 charge-discharge cycling, electrochemical performance is greatly improved.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第10期3780-3784,共5页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(21276286)
关键词 改进共沉淀法 LiCol 3Nil 3Mnl 302 球形二次颗粒 improved coprecipitation method LiCol/3Nil/3Mnl/302 spherical secondary particle
作者简介 通信作者:唐新村(1972-),男,湖南郴州人,博士,教授,从事锂电池正极材料研究,电话:13469431444,E-mail:tangxincun@163.com
  • 相关文献

参考文献18

  • 1Yoshio N. Lithium ion secondary battery technologies, present and future[J]. Macromol Symp, 2000, 156: 187-193.
  • 2Noboru O. Lithium polymer battery with high energy density[J]. Macromol Symp, 2000, 156: 171-178.
  • 3苏继桃,苏玉长,赖智广,方惠会.LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料的制备及其表征[J].中南大学学报(自然科学版),2008,39(2):221-227. 被引量:9
  • 4Armstrong A R Q Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries[J]. Nature, 1996, 381(6582): 499-500.
  • 5Yabuuchi N, Ohzuku T. Novel lithium insertion material of LiCO1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries[J]. Journal of Power Sources, 2003, 119/120/121: 171-174.
  • 6Xia Y, Sakai T, Fujieda T, et al. Correlating capacity fading and structural changes in Lil+rMn2-γO4 spinel cathode materials: A systematic study on the effects of Li/Mn ratio and oxygen deficiency[J]. J Electrochem Soc, 2001,148(7): A723-A729.
  • 7Piszora P, Paszkowicz W, Baehtz C, et al. X-ray diffraction studies on the nature of the phase transition in the stoichiometric LiMn2Oa[J]. J Alloys Compd, 2004, 382(1/2): 119-122.
  • 8Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. J Electroehem Soc, 1997, 144(4): 1188-1194.
  • 9Kim H S, Cho B W, Cho W I. Cycling performance of LiFePO4 cathode material for lithium secondary batteries[J]. J Power Sources, 2004, 132(1/2): 235-239.
  • 10张宝,张明,李新海,王志兴,郭华军,彭文杰.锂离子电池正极材料LiNi_(0.45)Co_(0.10)Mn_(0.45)O_2的合成及电化学性能[J].中南大学学报(自然科学版),2008,39(1):75-79. 被引量:8

二级参考文献50

共引文献19

同被引文献20

  • 1黄原君,高德淑,李朝晖,雷钢铁,苏光耀.LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2的Si/F复合掺杂及电化学性能[J].无机化学学报,2007,23(3):466-472. 被引量:5
  • 2Ohzuku T, Makimura Y. Layered lithium insertion mater- ial of LiNilCOlr3MntO2 for lithium-ion batteries[J]. Chem- istry Letters, 2001, 30(7): 642-643.
  • 3Yang Y, Xu S M, Xie M, et al. Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of NiColMn(OH)2[J]. Journal of Alloys and Compounds, 2015, 619(15): 846- 853.
  • 4Cheng C X, Tan L, Liu H W, et al. High rate performances of the cathode material LiNileCoMnO2 synthesized using low temperature hydroxide precipitation[J]. Materials Research Bulletin, 2011, 46(11): 2032-2035.
  • 5Fu F, Xu G L, Wang Q, et al. Synthesis of single crystalline hexagonal nanobricks of LiNieColr-nlO2 with high percentage of exposed {010} active facets as high rate performance cathode material for lithium-ion battery[J]. Journal of Materials Chemistry A, 2013, 1(12): 3860-3864.
  • 6Liang L W, Du K, Peng Z D, et al. Co-precipitation synthesis of Ni0.6Co0.2Mno.(OH)2 precursor and character- ization of LiNio.6Co.2Mn.20: cathode material for second- ary lithium batteries[J]. Electrochimica Acta, 2014, 130 (1): 82-89.
  • 7Huang Z L, Gao J, He X M, et al. Well-ordered spherical LiNixCoo.z)MnO2 cathode materials synthesized from cobolt concentration-gradient precursors[J]. Journal of Power Sources, 2012, 202: 284-290.
  • 8王伟东,仇卫华,丁倩倩. Nickel cobalt manganese based cathode materials for Li-ion batteries technology production and application [M].Beijing:化学工业出版社,2015:188.236.
  • 9Chang Z R, LigG G, Zhao Y J, et al. Influence of prepara- tion conditions of spherical nickel hydroxide on its elec- trochemical properties[J]. Journal of Power Sources, 1998, 74(2): 252-254.
  • 10Lee M H, Kang Y J, Myung S T, et al. Synthetic opti- mization of Li [NilColMn]O via co-precipitation[J]. Electrochimica Acta, 2004, 50(4): 939-948.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部