期刊文献+

Richardson数对后台阶流动熵产的影响 被引量:1

Effect of Richardson Number on Entropy Generation Over a Backward Facing Step
在线阅读 下载PDF
导出
摘要 后台阶流动是研究伴随有传热现象的分离流动的常用模型.虽然Richardson数的改变会明显影响分离流动的流动和传热特性,但是迄今为止关于Richardson数对后台阶流动熵产影响的研究依然很少.基于求解熵产方程,第一次系统研究Richardson数对后台阶流动熵产的影响.对于求解熵产方程所需的速度和温度等变量,通过格子Boltzmann方法来得到.通过上述工作可以发现,后台阶流动中熵产和Bejan数的分布随Richardson数变化显著.总熵产数是Richardson数的单调减函数而平均Bejan数是Richardson数的单调增函数. Flow over a backward facing step (BFS) has been taken as a useful prototype to in- vestigate characteristics of separated flow with heat transfer. However, to date the study on the effect of Richardson number on entropy generation over BFS is absent yet although the flow pattern and heat transfer characteristic both would receive significant influence caused by varia- tion of Richardson number in many practical applications, for example in microelectromechani- cal systems and aerocrafts. The effect of Richardson number on entropy generation in BFS flow was reported for the first time. Results of entropy generation analysis was obtained by numeri- cally solving the entropy generation equation. The values of velocity and temperature, which were the inputs of the entropy generation equation, were obtained by the lattice Boltzmann method. It is found that the distributions of local entropy generation number and Bejan number are significantly influenced by the variation of Richardson number. The total entropy generation number is a monotonic decreasing function of Richardson number whereas the average Bejan number is a monotonic increasing function of Richardson number.
作者 陈胜
出处 《应用数学和力学》 CSCD 北大核心 2012年第11期1330-1339,共10页 Applied Mathematics and Mechanics
关键词 熵产 后台阶流 Richardson数 格子BOLTZMANN方法 entropy generation backward facing step Richardson number lattice Boltzmannmethod
作者简介 陈胜(1977-),男,湖北武汉人,副教授,博士(Tel:+86-27—87542417;Fax:+86—27—87544779;E—mail:shengchen.hust@gmail.com).
  • 相关文献

参考文献2

二级参考文献23

  • 1Chen S Y and Doolen Gary D 1998 Annu. Rev. Fluid Mech. 30 329.
  • 2Benzi R and Succi S 1990 J. Phys. A 23 L1.
  • 3Hou S et al 1996 Fields Inst. Comm. 6 151.
  • 4Xu Y S and Xu X Z 2002 Chin. Phys. 11 583.
  • 5Xu Y S et al 2003 Chin. Phys. 12 621.
  • 6Luo L S 2000 Phys. Rev. E 62 4982.
  • 7Feng S D et al 2001 Chin. Phys. 10 621.
  • 8He X eL al 1998 J. Comp. Phys. 146 282.
  • 9Peng L et al 2003 Acta Phys. Sin. 52 1 (in Chinese).
  • 10Xue Yet al 2004 Acta Phys. Sin. 531 (in Chinese).

共引文献57

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部