摘要
为了提高遥感图像的分类精度和识别速度,提出了一种基于K型支持向量机(SVM)的遥感图像分类新算法,该算法将灰度共生矩阵提取的纹理特征与光谱特征相结合进行分类。对两组Landsat ETM+数据进行分类仿真实验,结果表明,在多光谱遥感图像的分类中,新算法提高了分类效率、分类精度和泛化能力,K型SVM是一种优于径向基函数SVM的分类器。
In order to improve the accuracy and recognition speed of the remote sensing image classification, this paper put forward a new algorithm of remote sensing image classification based on K-type Support Vector Machine (SVM), and this algorithm used texture features extracted by gray level co-occurrence matrix combined with the spectral ones for classification. The classification simulation tests were done with two groups of Landsat ETM + data. The results show that the new algorithm can improve the accuracy and efficiency of the classification, raise generalization ability, and K-type SVM is a superior classifier to the Radial Basis Function (RBF) SVM.
出处
《计算机应用》
CSCD
北大核心
2012年第10期2832-2835,2839,共5页
journal of Computer Applications
基金
国家自然科学基金资助项目(50877010)
福建省杰出青年科学基金资助项目(2009J06024)
关键词
K型核函数
支持向量机
纹理特征
灰度共生矩阵
遥感图像分类
K-type kernel function
Support Vector Machine (SVM)
texture feature
Gray Level Co-occurrence Matrix (GLCM)
remote sensing image classification
作者简介
通信作者:王静(1988-),女,山东济南人,硕士研究生,主要研究方向:遥感图像处理,电子邮箱wangjing88527@126.com;何建农(1960-),女,福建福州人,副教授,主要研究方向:图像处理、信息安全、网格GIS。