期刊文献+

多特征融合的英语口语考试自动评分系统的研究 被引量:11

Research for Automatic Short Answer Scoring in Spoken English Test Based on Multiple Features
在线阅读 下载PDF
导出
摘要 该文主要针对大规模英语口语考试自动评分系统的问答题型,采用多特征融合的方法进行评分。以语音识别文本作为研究对象,提取了3类特征进行评分。这3类特征分别是:相似度特征、句法特征和语音特征。总共9个特征从不同方面描述了考生回答与专家评分之间的关系。在相似度特征中,改进了Manhattan距离作为相似度。同时提出了基于编辑距离的关键词覆盖率的特征,充分考虑了识别文本中存在的单词变异现象,为给考生一个客观公平的分数提供依据。所有提取的特征利用多元线性回归模型进行融合,得到机器评分。实验结果表明,提取的特征对机器评分是十分有效的,并且在以考生为单位的系统评分性能达到了专家评分性能的98.4%。 This paper focuses on automatic scoring about ask-and-answer item in large scale of spoken English test. Three kinds of features are extracted to score based on the text from Automatic Speech Recognition (ASR). They are similarity features, parser features and features about speech. All of nine features describe the relation with human raters from different aspects. Among features of similarity measure, Manhattan distance is converted into similarity to improve the performance of scoring. Furthermore, keywords coverage rate based on edit distance is proposed to distinguish words' variation in order to give students a more objective score. All of those features are put into multiple linear regression model to score. The experiment results show that performance of automatic scoring system based on speakers achieves 98.4% of human raters.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第9期2097-2102,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(10925419,90920302,10874203,60875014,61072124,11074275,11161140319)资助课题
关键词 自动语音识别 自动评分 特征选择 相似度 句法树 Automatic Speech Recognition (ASR) Automatic scoring Feature selection Similarity measure Parser tree
作者简介 通信作者:李艳玲liyanling@hccl.ioa.ac.cn 李艳玲:女,1978年生,讲师,博士生,研究方向为信号处理、自然语言处理. 颜永红:男,1967年生,研究员,研究方向为语音识别、语种识别以及语音信号处理等.
  • 相关文献

参考文献14

  • 1Mohler M and Mihalcea R. Learning to grade short answer questions using semantic similarity measures and dependency graph alignments[C]. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, Portland, USA, 2011: 752-762.
  • 2丁克玉,李兆远,刘飞,等.面向大规模英语口语考试的自动语法评分技术研究[C].第12届中国机器学习会议,济南,2010:1-7.
  • 3Chen Miao and Zechner K. Computing and evaluating syntactic complexity features for automated scoring of spontaneous non-native speech[C]. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics (ACL), Portland, USA, 2011: 722-731.
  • 4Butcher P G and Jordan S E. A comparison of human and computer marking of short free-text student responses[J]. Computers & Education, 2010, 55(2): 489-499.
  • 5Leacock C and Chodorow M. C-rater: automated scoring of short-answer questions[J]. Computers and the Humanities, 2003, 37(4): 389-405.
  • 6Valenti S, Neri F, and Cucchiarelli A. An overview of current research on automated essay grading[J]. Journal of Information Technology Education, 2003, 2: 319-330.
  • 7Siddiqi R and Harrison C J. On the automated assessment of short free-text responses[C]. International Association for Educational Assessment (IAEA), Cambridge, UK, 2008: 1-11.
  • 8Sukkarieh J Z, Pulman S G, and Ralkes N. Auto-marking: using computational linguistics to score short, free textresponses[C]. Proceedings of the 29th Annual Conference of the International Association for Educational Assessment, Manchester, UK, 2003: 1-15.
  • 9Achananuparp P, Hu Xiao-hua, and Shen Xia-jiong. The evaluation of sentence similarity measures[C]. Proceedings of the 10th International Conference on Data Warehousing and Knowledge Discovery, Berlin, Germany, 2008, 5182: 305-316.
  • 10Richard K, Angelo K, and Mayya T. Automated assessment of short free-text responses in computer science using latent semantic analysis[C]. Proceedings of the 16th Annual Joint Conference on Innovation and Technology in Computer Science Education (ITiCSE), Darmstadt, Germany, 2011: 158-162.

同被引文献78

引证文献11

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部