期刊文献+

基于极化分解的极化特征参数提取与应用 被引量:12

Extraction and Application of Polarimetric Characteristic Parameters Based on Polarimetric Decomposition
在线阅读 下载PDF
导出
摘要 基于极化分解原理,获取了描述地物散射机制的特征参数,并组合成一些特征指数,如雷达植被指数等。这些特征指数具有反映体散射信息的能力,从而可间接获取植被长势、疏密程度及分布区域等信息。实验选择了鄱阳湖区Radarsat-2全极化数据,结合野外采集的样本数据,在分析该区植被特征的基础上,对不同特征参数进行了对比分析,对雷达植被指数与实地测量样本的生物量参数进行了相关分析。实验结果表明:文中给出的4种特征参数对植被引起的随机散射的描述总体趋势是一致的,但随着植被覆盖密度的增大,不同特征指数具有一定的差异,其中雷达植被指数最为准确,适用动态范围最大,并且与湿地植被生物量具有较高的线性相关性,可以定量地反映研究区的植被疏密及生物量差异信息。 Based on the polarization decomposition, the authors obtained a set of characteristic parameters to characterize the surface features, and formed some indices by combing these characteristic parameters to extract vegetation growing information such as radar vegetation indexes. These characteristic parameters have the function of reflecting the backscattering information and indirectly obtaining such information as vegetation growing, density and distribution areas. A scene of Radarsat -2 full polarimetric SAR data covering Poyang Lake region was chosen for this experiment and the sample data which included the biomass and vegetation density information were collected in the field at the same time. On the basis of an analysis of vegetation characteristics in this test region, the characteristic parameters were compared with each other and analyzed for their physical meaning. The radar vegetation index and field measurements of biomass sample parameters were statistically correlated. The experimental results show that the four characteristic parameters described in this paper give the same overall trend on the random scattering of vegetation, but different indexes have different indications with the increasing vegetation density, of which the most accurate index is the radar vegetation index, which has the maximum dynamic range. The radar vegetation index has a high linear correlation with the biomass of wetland vegetation, so that it can be used to quantitatively infer the vegetation covering density and the biomass information.
出处 《国土资源遥感》 CSCD 北大核心 2012年第3期103-110,共8页 Remote Sensing for Land & Resources
基金 国家863课题(编号:2012AA121304 2008AA121806) 教育部博士点基金(编号:20090001110039)共同资助
关键词 非相干分解 极化分解 散射机制 雷达植被指数 non -coherent decomposition polarimetric decomposition scattering mechanism radar vegetation index
作者简介 王庆(1986-),男,博士研究生,主要从事微波遥感应用研究。E—mail:wangqing_rs@pku.edu.cn。 通信作者:曾琪明(1964-),男,教授,博士生导师,主要从事微波遥感研究。E-mail:qmzeng@pku.edu.cn。
  • 相关文献

参考文献11

  • 1Lee J S,Pottier E.Polarimetric Radar Imaging: From Basics to Applications[M].New York:CRC Press,2009:229-262.
  • 2Cloude S.Polarisation:Applications in Remote Sensing[M]. Oxford:Oxford University Press,2010:178-189.
  • 3Cloude S R,Pottier E.A Review of Target Decomposition Theorems in Radar Polarimetry[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(2):498-518.
  • 4Freeman A,Durden S L.A Three-component Scattering Model for Polarimetric SAR Data[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(3):963-973.
  • 5Cloude S R.Target Decomposition Theorems in Radar Scattering[J].Electronics Letters,1985,21(1):22-24.
  • 6Cloude S R,Pottier E.An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(1):68-78.
  • 7Van Zyl J J.An Overview of the Analysis of Multi-frequency Polarimetric SAR Data[C]//6th European Conference on Synthetic Aperture Radar(EUSAR 2006).Dresden,Germany,2006:16-18.
  • 8Luneburg E.Foundations of the Mathematical Theory of Polarimetry[R]//Final Report PhaseI,N00014-00-M-0152,EML Consultants,2001.
  • 9Van Zyl J J,Zebker H A,Elachi C.Imaging Radar Polarization Signatures:Theory and Observation[J].Radio Science,1987,22(4):529-543.
  • 10Attema E P W,Ulaby F T.Vegetation Modeled as a Water Cloud[J].Radio Science,1978,13(2):357-364.

二级参考文献14

  • 1周德民,宫辉力,胡金明,吴丰林.中国湿地卫星遥感的应用研究[J].遥感技术与应用,2006,21(6):577-583. 被引量:43
  • 2张柏.遥感技术在中国湿地研究中的应用[J].遥感技术与应用,1996,11(1):67-71. 被引量:41
  • 3Lanetta R S, Barlogh M E. Application of Multi - temporal Landsat 5 TM Imagery for Wetland Identification [ J ]. Photogrammetric Engineering and Remote Sensing, 1999, 65 ( 11 ) : 1303 - 1310.
  • 4Costa M, Telmer K. Utilizing SAR Imagery and Aquatic Vegetation to Map Fresh and Brackish Lakes in the Brazilian Pantanal Wetlang [ J ]. Remote Sensing of Environment, 2006, 105 : 204 -213.
  • 5Hess L, Melack J , Filoso S, et al. Delineation of Inundated Area and Vegetation along the Amazon Floodplain with the SIR - C Synthetic Aperture Radar [J]. IEEE Transactions on Geoscienee and Remote Sensing, 1995, 33 : 896 -904.
  • 6Kasischke E, Bourgeau - Chavez L. Monitoring South Florida Wetlands Using ERS - 1 SAR Imagery [ J ]. Photogrammetric Engineering and Remote Sensing, 1997, 63 : 281 - 281.
  • 7Kasischke E, Smith K, Bourgeau -Chavez L, et al. Effects of Seasonal Hydrologic Patterns in South Florida Wetlands on Radar Backscatter Measured from ERS - 2 SAR hnagery [ J]. Remote Sensing of Environment, 2003, 88:423 -441.
  • 8Li J, Chen W. A Rule - based Method for Mapping Canada' s Wetlands Using Optical, Radar and DEM Data[J]. International Journal of Remote Sensing, 2005, 26 : 5051 - 5069.
  • 9Parmuchi M, Karsenbaum H, Kandus P. Mapping Wetlands Using Multi - temporal Radarsat - 1 Data and Decision - based Classifier [ J ]. Canadian Journal of Remote Sensing, 2002, 28 : 175 - 186.
  • 10Touzi R. Wetland Characterization Using Polarimetric Radarsat -2 Capability [ A]. Proceedings of IGARSS 2006 [ C ]. Denver: IEEE press, 2006.

共引文献8

同被引文献155

引证文献12

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部