期刊文献+

可变精度多粒度粗糙集模型 被引量:9

Variableprecision multigranulation rough sets
在线阅读 下载PDF
导出
摘要 可变精度粗糙集和多粒度粗糙集都是在不可分辨关系的基础上对经典粗糙集进行扩展.为了融合这两种扩展模型各自的优点,在多粒度环境中,构建了可变精度多粒度粗糙集,其中包括可变精度多粒度乐观近似和可变精度多粒度悲观近似两种形式.讨论了可变精度多粒度粗糙集的相关性质,并对可变精度多粒度粗糙集和经典的多粒度粗糙集进行了对比分析.最后得出结论,在多粘度框架下,采用变精度的方法,可以进一步提高近似精度. As the two important expansions of the classical rough set, variable precision rough set and muhigran- ulation rough set are both constructed on the basis of the indiscernibility relations. To integrate the good points of these two expanded rough sets, in the multigranulation environment, the variable precision multigranulation rough set models are proposed, which include' variable precision multigranulation optimistic approximation and muhigranulation rough sets are discussed, but also the relationship between variable precision muhigranulation rough set and the classical muhigranulation rough set are deeply investigated. Finally, it is concludeel that under multigraualatiov frame, the accuracy tff approximation can be improved by the variable precision approach.
出处 《江苏科技大学学报(自然科学版)》 CAS 2012年第1期65-69,共5页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国家自然科学基金资助项目(61100116) 江苏省自然科学基金资助项目(BK2011492) 江苏省高校自然科学基金资助项目(11KJB520004) 中国博士后科学基金资助项目(20100481149) 江苏省博士后科学基金资助项目(1101137C)
关键词 多粒度粗糙集 可变精度粗糙集 可变精度多粒度粗糙集 multigranulation rough set variable precision rough set variable precision multigranulation rough set
作者简介 窦慧莉(1980-),女,江苏连云港人,讲师,研究方向为粒计算与智能信息处理.E-mail:douhuili@163.com.
  • 相关文献

参考文献1

二级参考文献9

  • 1杨习贝,吴陈,傅凡.不完备信息系统中属性增减下粗集近似概念的更新[J].江苏科技大学学报(自然科学版),2005,19(6):64-69. 被引量:2
  • 2Pawlak Z. Rough set theory and its applications to data analysis [J]. Cybernetics and Systems, 1998, 29(7) :661 - 688.
  • 3Pawlak Z. Rough sets and intelligent data analysis [J]. Information Sciences, 2002, 147(1/4) : 1 - 12.
  • 4Grzymala-Busse J W. Data with missing attribute values: generalization of indiscernibility relation and rule induction[J]. Transactions on Rough Sets I, 2004, 3100:78 - 95.
  • 5Stefanowski J, Tsoukias A. Incomplete information tables and rough classification [ J ]. Computational Intelligence, 2001, 17 : 545 - 566.
  • 6Kryszkiewicz M. Rough set approach to incomplete information systems [J]. Information Sciences, 1998, 112 : 39 - 49.
  • 7Ziarko W. Variable precision rough set model[ J ]. Journal of Computer and System Sciences, 1993, 46 : 39 - 59.
  • 8祝峰,王飞跃.关于覆盖广义粗集的一些基本结果[J].模式识别与人工智能,2002,15(1):6-13. 被引量:49
  • 9王国胤.Rough集理论在不完备信息系统中的扩充[J].计算机研究与发展,2002,39(10):1238-1243. 被引量:304

共引文献4

同被引文献37

  • 1陈世清,唐志航,肖建华.基于粗糙集联系度的数据挖掘算法及应用研究[J].计算机应用,2004,24(6):74-77. 被引量:6
  • 2Pawlak Z. Rough sets [J]. International Joumal of Computer and information Science, 1982,11:341-356.
  • 3Yao Y Y. Constructive and algebraic methods of the theory of rough sets [J]. Information Sciences, 1998,109: 21-47.
  • 4Qian Yuhua, Liang Jiye, Yao Yiyu, Dang Chuangyin. MGRS: A multi- granulation rough set [J]. Information Sciences, 2010,180:949-970.
  • 5Lin Guoping, Qian Yuhua, Li Jinjin. NMGRS: Neighborhood-based multigranulation rough sets [J]. International Journal of Approximate Reasoning, 2012, 53: 1080- 1093.
  • 6张小红,裴道武,代建华.模糊数学与Rough集理论.北京:清华大学出版社,2013.
  • 7Pawlak Z.Rough sets[J].International Journal of Informationand Computer Science,1982,11(5):341-356.
  • 8Qian Y H,Li S Y,Liang J Y,et al.Pessimistic roughset based decisions:a multigranulation fusion strategy[J].Information Sciences,2013,264(2014):196-210.
  • 9Skowron A,Swiniarski R,Synak P.Approximation spacesand information granulation[C].Proc of the 4th InternationalConference on Rough Sets and Current Trendsin Computing,2004:116-125.
  • 10Qian Y H,Liang J Y,Dang C Y.Incomplete multigranulationrough set[J].IEEE Transactions on Systems,Manand Cybernetics:Part A,2010,20:420-431.

引证文献9

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部