期刊文献+

广义不完备序值系统中的优势关系粗糙集 被引量:10

Dominance-based rough set in generalized incomplete ordered system
在线阅读 下载PDF
导出
摘要 为了使用优势关系粗糙集处理同时具有丢失型和遗漏型未知属性值的广义不完备序值系统,提出了特征优势关系的概念,并且在广义不完备序值决策系统中引入近似分布约简,提出了4种新的近似分布约简形式,为从复杂的不完备系统中获取规则提供了理论基础与操作手段.结果表明基于特征优势关系粗糙集模型能有效地处理具有2种未知属性值的广义不完备系统. To deal with the generalized incomplete ordered information system in which both lost and "do not care" unknown values are coexisting by dominance-based rough set,the concept of characteristic dominance relation is proposed for classification analysis.Furthermore,the approximate distribution reduct is introduced into generalized incomplete ordered decision systems and then four new approximate distribution reducts are proposed.These results are meaningful both in the theory and in applications for rules′ acquisition in complex incomplete systems.This research tells us that the characteristic dominance relation based rough set model is effective in dealing with the generalized incomplete system that contains two different types of unknown values.
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2011年第3期262-267,共6页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 中国博士后科学基金资助项目(20100481149)
关键词 不完备信息系统 序值信息系统 特征关系 优势关系 特征优势关系 知识约简 incomplete information system ordered information system characteristic relation dominance relation characteristic dominance relation knowledge reductions
作者简介 杨习贝(1980-),男,江苏镇江人,讲师,博士后,研究方向为粒计算与智能信息处理.E-mail:yangxibei@163.com
  • 相关文献

参考文献9

  • 1Grzymala-Busse J W. Data with missing attribute values:generalization of indiscemibility relation and rule induction[ J ]. Transactions on Rough Sets I, Lecture Notes in Computer Science, 2004, 3100 : 78 - 95.
  • 2华伟,祁云嵩,王芳.不完备目标信息系统中的可变精度粗糙集模型[J].江苏科技大学学报(自然科学版),2009,23(6):531-534. 被引量:5
  • 3杨习贝,杨静宇,吴陈,於东军.不完备信息系统中基于特征关系的粗集模型[J].模式识别与人工智能,2007,20(4):450-457. 被引量:8
  • 4Li Tianrui, Da Ruan, Geert Wets, et al. A rough sets based characteristic relation approach for dynamic attrib- ute generalization in data mining [ J ]. Knowledge-Based Systems, 2007, 20 (5) : 485 - 494.
  • 5Greco S, Matarazzo B, SlowiAski R. Rough sets theory for multicriteria decision analysis [ J ]. European Journal of Operational Research, 2001, 129( 1 ) : 1 -47.
  • 6Yang Xibei, Yang Jingyu, Wu Chen, et al. Dominance- based rough set approach and knowledge reductions in in- complete ordered information system [ J ]. Information Sciences, 2008, 178(4), 1219-1234.
  • 7Shao Mingwen, Zhang Wenxiu. Dominance relation and rules in an incomplete ordered information system [ J ]. International Journal of Intelligent Systems, 2005, 20 : 13 - 27.
  • 8Yang Xibei, Yu Dongjun, Yang Jingyu, et al. Dominance-based rough set approach to incomplete interval- valued information system [ J ]. Data & Knowledge Engineering, 2009, 68(11) : 1331 - 1347.
  • 9Mi Jusheng, Wu Weizhi, Zhang Wenxiu. Approaches to knowledge reduction based on variable precision rough set model [ J ]. Information Sciences, 2004, 159 (3/4) : 255 - 272.

二级参考文献20

  • 1杨习贝,吴陈,傅凡.不完备信息系统中属性增减下粗集近似概念的更新[J].江苏科技大学学报(自然科学版),2005,19(6):64-69. 被引量:2
  • 2Pawlak Z. Rough set theory and its applications to data analysis [J]. Cybernetics and Systems, 1998, 29(7) :661 - 688.
  • 3Pawlak Z. Rough sets and intelligent data analysis [J]. Information Sciences, 2002, 147(1/4) : 1 - 12.
  • 4Grzymala-Busse J W. Data with missing attribute values: generalization of indiscernibility relation and rule induction[J]. Transactions on Rough Sets I, 2004, 3100:78 - 95.
  • 5Stefanowski J, Tsoukias A. Incomplete information tables and rough classification [ J ]. Computational Intelligence, 2001, 17 : 545 - 566.
  • 6Kryszkiewicz M. Rough set approach to incomplete information systems [J]. Information Sciences, 1998, 112 : 39 - 49.
  • 7Ziarko W. Variable precision rough set model[ J ]. Journal of Computer and System Sciences, 1993, 46 : 39 - 59.
  • 8Pawlak Z. Rough Set Theory and Its Applications to Data Analysis. Cybernetics and Systems, 1998, 29(7): 661-688
  • 9Pawlak Z. Rough Sets and Intelligent Data Analysis. Information Sciences, 2002, 147(1/2/3/4): 1-12
  • 10Wu Weizhi, Zhang Wenxiu, Li Huaizu. Knowledge Acquisition in Incomplete Fuzzy Information Systems via the Rough Set Ap proach. Expert Systems, 2003, 20(5): 280-286

共引文献11

同被引文献86

  • 1胡明礼,刘思峰.基于有限扩展优势关系的粗糙决策分析方法[J].系统工程,2006,24(4):106-110. 被引量:14
  • 2杨习贝,杨静宇,吴陈,於东军.不完备信息系统中的特征关系进一步研究[J].系统工程理论与实践,2007,27(6):155-160. 被引量:4
  • 3Pawlak Z. Rough sets:theoretical aspects of reasoning a-bout data [ M ]. London: Kluwer Academic Publishers, 1991 : 1 - 225.
  • 4Pawlak Z, Skowron A. Rudiments of rough sets [ J ]. Information Sciences, 2007, 177 ( 1 ) : 3 - 27.
  • 5Pawlak Z, Skowron A. Rough sets : some extensions [ J ]. Information Sciences, 2007, 177( 1 ): 28-40.
  • 6Pawlak Z, Skowron A. Rough sets and boolean reasoning [J]. Information Sciences, 2007, 177 (1) : 41 -73.
  • 7Qian Y H, Liang J Y, Dang C Y. Incomplete multigranu- lation rough set [ J ]. IEEE Transactions on Systems, Man, and Cybernetics: Part A, Systems and Humans, 2010, 40(2) : 420 -431.
  • 8Qian Y H, Liang J Y, Yao Y Y, et al. MGRS: A multi- granulation rough set [ J ]. Information Sciences, 2010, 180(6) : 949 -970.
  • 9Kryszkiewicz M. Rough set approach to incomplete informa- tion systems[ J]. Information Sciences, 1998, 112(1/4) : 39 --49.
  • 10Stefanowski J, Tsoukias A. Incomplete information ta- bles and rough classification[ J ]. Computational InteUi- gence, 2001, 17(3) : 545 -566.

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部