期刊文献+

纳米羟基磷灰石与聚己内酯复合电纺纤维膜 被引量:3

Composites of Nano-hydroxyapatite and Poly(ε-caprolactone) Composite Fibers by Electrospinning
在线阅读 下载PDF
导出
摘要 用水热法合成的棒状纳米羟基磷灰石(nHA),引发ε-己内酯(ε-CL)开环聚合得到nHA-PCL复合材料。用静电纺丝法分别制备了聚己内酯(PCL)、nHA/PCL共混材料和nHA-PCL复合材料的3种电纺纤维膜。通过FT-IR、DSC、SEM、TGA和拉伸试验机表征了样品的结构、热性能和力学性能。结果表明:nHA-PCL电纺膜的结晶性能优于nHA/PCL材料,且热稳定性和力学性能都优于其他两种膜,nHA-PCL电纺膜的完全分解温度为420°C,拉伸强度和断裂伸长率分别达到28.2MPa和55.6%。3种膜的纤维直径均小于500 nm,nHA-PCL电纺膜的纤维表面比较粗糙。在人体仿生液中诱导矿化4 d后,nHA-PCL电纺膜纤维表面出现磷灰石沉积,而纯PCL和共混nHA/PCL电纺膜的纤维表面沉积的磷灰石很少,nHA-PCL复合电纺膜具有较好的诱导成骨性能。 The rod-like nano-hydroxyapatite(nHA) which synthesized by hydrothermal route induced the ring-opening polymerization of ε-caprolactone and nHA-PCL composites were obtained.Polycaprolactone(PCL),the mixed material(nHA/PCL) and nHA-PCL were used to prepare membranes respectively via electrospinning.The structure,mechanical properties and thermostability of the three electrospun membranes were characterized by FT-IR,DSC,SEM,TGA and tensile testing machine.The results of the FT-IR and DSC showed that PCL in nHA-PCL membrane had better crystalline ability than the other two membranes.The results of tests showed that nHA-PCL membrane had better mechanical properties and thermostability than other two membranes.The complete decomposition temperature of nHA-PCL membrane was 420 °C.The tensile strength and the breaking elongation of nHA-PCL membrane were 28.2 MPa and 55.6%,respectively.The SEM results showed that the fibers diameter of the three membranes were lower than 500 nm,but the fiber surface of nHA/PCL electrospun membrane became rough.After immersion in SBF for 4 d,there was much more calcium phosphate on the surface of nHA-PCL electrospun membrane comparing with PCL and nHA/PCL electrospun membranes.The bone-forming ability of nHA-PCL compound material was good.
出处 《功能高分子学报》 CAS CSCD 北大核心 2012年第1期40-46,共7页 Journal of Functional Polymers
基金 安徽省自然科学基金资助项目(070414193)
关键词 静电纺丝 纳米羟基磷灰石 聚己内酯 人体仿生液 electrospinning nano-hydroxyapatite poly(ε-caprolactone) simulated body fluid
作者简介 陈佳佳(1987-),女,安徽宿州人,硕士生,研究方向为功能高分子。E-mail:chenjiajia19871205@126.com 通讯联系人:黄毅萍,E-mail:yphuang2001@sina.com.cn
  • 相关文献

参考文献17

  • 1Deitzel J M, leinmeyer J D, Hirvonen J K, et al. Controlled deposition of electrospun poly(ethylene oxide) fibers [J]. Polymer, 2001, 42(19): 8163-8170.
  • 2Cui Wenguo, Li Xiaohong, Chen Jiangang, et al. In situ growth kinetics of hydroxyapatite on electrospun poly(D, L lactide) fibers with gelatin grafted[J]. Crystal Growth and Design, 2008, 8(12): 4576-4582.
  • 3Nirmala R, Nam K T, Park D K, et al. Structural, thermal, mechanical and bioactivity evaluation of silver-loaded bovine bone hydroxyapatite grafted poly(s caprolactone) nanofibers via electrospinning [J]. Surface and Coating Technology, 2010, 205(1): 174-181.
  • 4Mattanavee W, Suwantong O, Puthong S, et al. Immobilization of biomolecules on polycaprolactone fibrous scaffolds for tissue engineering [J]. Applied Materials and Interfaces,2009, 1(5): 1076-1085.
  • 5Patlolla A, Collins G, Arinzeh Livingston. Solvent-dependent properties of eiectrospun fibrous composites for bone tissue regeneration [J]~. Acta Biomaterialia, 2010, 6(1): 90-101.
  • 6Ito Y, Hasuda H, Kamitakahara M, et al. A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material [J]. Journal of Bioscience and Bioengineering, 2005, 100(1):43-49.
  • 7Wutticharoenmongkol P, Pavasant P, Supaphol P. Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles [J]. Biomacromolecules, 2007, 8 (8): 2602-2610.
  • 8Yang Fang, Both $ K, Yang Xuechao, et al. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application[J]. Acta Biomaterialia, 2009, 5(9): 3295-3304.
  • 9Fu Shaozhi, Wang Xiuhong, Guo Gang, et al. Preparation and characterization of nano-hydroxyapatite/ poly (ε- caprolactone)-poly(ethylene glycol)-poly(ε -caprolactone) composite fibers for tissue engineering [J]. Journal of Physical Chemistry C, 2010, 114(43): 18372-18378.
  • 10Azevedo M C, Reis R L, Claase M B, et al. Development and properties of polycaprolactone/hydroxyapatite composite biomaterials [J]. Journal of Materials Science: Materials in Medicine, 2003, 14(2): 103-107.

二级参考文献15

  • 1李戈,符仁义.羟基磷灰石纳米粒子对HL-60细胞增殖抑制作用的研究[J].肿瘤防治杂志,2005,12(2):103-104. 被引量:7
  • 2袁媛,唐胜利,洪华,刘昌胜.纳米羟基磷灰石的制备及其抗肿瘤活性的研究[J].中国生物医学工程学报,2005,24(1):26-30. 被引量:19
  • 3施尔畏,夏长泰,王步国,仲维卓.水热法的应用与发展[J].无机材料学报,1996,11(2):193-206. 被引量:289
  • 4Bagambisa F B,Joos U,Schilli W.Mechanisms and structure of the bond between bone and hydroxyapatite ceramics[J].J of Biomed Mater Res,1993,27 (8):1047-1055.
  • 5Aoki H.Science and medical applications of hydroxyapatite[M].Tokyo:Takayama Press System Center Co,Inc,1991:165-177.
  • 6Kunieda K,Seki T,Nakatani S,et al.Implantation treatment of slow release anticancer doxorubicin-containing hap (dox-hap) complex-a basic study of a new treatment for hepatic cancer[M].Br J Cancer,1993,67:668-673.
  • 7Ivana Smiciklas,Antonije Onjia,Slavica Raicevic.Experimental design approach in the synthesis of hydroxyapatite by neutralization method[J].Separation and Purification Technology.2005,44:97-102.
  • 8Zhang Fan,Zhou Zhuo-hua,Yang Shi-ping,et al.Hydrothermal synthesis of hydroxyapatite nanorods in the presence of anionic starburst dendrimer[J].Materials Letters,2005,59:1422-1425.
  • 9Wojciech L.Suchanek,Kullaiah Byrappa,Pavel Shuk,et al.Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method[J].Biomaterials,2004,25:4647-4657.
  • 10Han Yingchao,Li Shipu,Wang Xinyu,et al.Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method[J].Materials Research Bulletin,2004,39:25-32.

共引文献2

同被引文献36

  • 1毛天球,陈富林,杨维东,陶凯.骨组织工程的研究进展[J].中国组织工程研究与临床康复,2001,10(16):5-7. 被引量:40
  • 2王立元,王建清.淀粉-纤维降解包装材料的性能研究[J].包装工程,2005,26(2):7-9. 被引量:19
  • 3Williams D. Beneit and risk in tissue engineering [ J ]. Mater Today, 2004, 7(5) : 24-29.
  • 4Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory's experience [ J]. Acc Chem Res, 2000, 33 (2): 94- 101.
  • 5Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering [ J]. Biomaterials, 2003, 24 (24) : 4353-4364.
  • 6Yuan H, Feruandes H, Habibovic P, et al. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting [ J ]. Proc Nat1 Acad Sei USA, 2010, 107(31) : 13614-13619.
  • 7Venugopal J, Prabhakaran MP, Zhang YZ, et al. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering [ J]. Philos Trans A Math Phys Eng Sci, 2010, 368 ( 1917 ) : 2065-2081.
  • 8Williams JM, Adewunmi A, Schek RM, et al. Bone tissue engineering using polyeaprolactone scaffolds fabricated via selective laser sintering [ J]. Biomaterials, 2005, 26 (23) : 4817-4827.
  • 9Tan KH, Chua CK, Leong KF, et al. Selective laser sintering of biocompatible polymers for applications in tissue engineering [ J ]. Biomed Mater Eng, 2005, 15 (1-2) : 113-124.
  • 10Del Real RP, Wolke JG, Vallet-Reqi M, et al. A new method to produce macropores in calcium phosphate cements [ J ]. Biomaterials, 2002, 23 (17): 3673-3680.

引证文献3

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部